TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS
Oleh Krulikovskyi
o.krulikovskyi@chnu.edu.uaYuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0001-5995-6857
Serhii Haliuk
Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0003-3836-2675
Ihor Safronov
Yuriy Fedkovych Chernivtsi National University (Ukraine)
Valentyn Lesinskyi
Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0002-1259-1974
Abstract
This manuscript explores a two-dimensional hyperchaotic map for generating chaotic oscillations. Hyperchaotic maps are finding increasing applications in various scientific and technological fields due to the unique properties of their generated oscillations. The studied map, based on two interconnected piecewise-linear functions, is one of the simplest for generating oscillations with a predetermined distribution of values across a continuous parameter space. This simplicity allows for wide applicability in various contexts. The paper presents simulation results demonstrating control over the parameters of the dynamic modes. Building upon these modeling results, a two-dimensional hyperchaotic system is implemented using an electric circuit. The chosen map is attractive due to its inherent simplicity and ease of parameter control. By adjusting these parameters, the distribution of the generated signal's values can be manipulated. The circuit consists of two symmetrical sections connected via feedback loops, employing four amplifiers with variable gain. The gain values act as the circuit's implementation of the control parameters. Chaotic oscillations are generated by applying a delayed clock signal from an external square wave generator to circuit elements. The obtained experimental results exhibit excellent agreement with the simulation data.
Keywords:
hyperchaotic map, chaotic oscillations, variable distribution, circuit implementationReferences
[1] Alvarez G., Shujun L.: Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16(08), 2006, 2129–2151 [https://doi.org/10.1142/S0218127406015970].
DOI: https://doi.org/10.1142/S0218127406015970
Google Scholar
[2] Callegati F. et. al.: Traffic Engineering: A Practical Approach. Springer, 2022 [https://doi.org/10.1007/978-3-031-09589-4].
DOI: https://doi.org/10.1007/978-3-031-09589-4
Google Scholar
[3] Corinto F. et. al.: Memristor-based chaotic circuit for pseudo-random sequence generators, Proc. of 18th Mediterranean Electrotechnical Conference MELECON 2016, Limassol, Cyprus, 2016 [https://doi.org/10.1109/MELCON.2016.7495319].
DOI: https://doi.org/10.1109/MELCON.2016.7495319
Google Scholar
[4] Endo T., Yokota J.: Generation of White Noise by Using Chaos in Practical Phase-Locked Loop Integrated Circuit Module. IEEE International Symposium on Circuits and Systems ISCAS, New Orleans, LA, USA 2007, 201–204 [https://doi.org/10.1109/ISCAS.2007.378311].
DOI: https://doi.org/10.1109/ISCAS.2007.378311
Google Scholar
[5] Garasym O. et. al.: How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps. Journal of Difference Equations and Applications 23(5), 2017, 821–859 [https://doi.org/10.1080/10236198.2017.1287176].
DOI: https://doi.org/10.1080/10236198.2017.1287176
Google Scholar
[6] Garasym O. et. al.: New Nonlinear CPRNG Based on Tent and Logistic Maps. Complex Systems and Networks. Lü J. et. al. (ed.): Understanding Complex Systems. Springer 2016 [https://doi.org/10.1007/978-3-662-47824-0_6].
DOI: https://doi.org/10.1007/978-3-662-47824-0_6
Google Scholar
[7] Garasym O. et. al.: Robust PRNG based on homogeneously distributed chaotic dynamics. Journal of Physics: Conference Series 692(1), 2016 [https://doi.org/10.1088/1742-6596/692/1/012011].
DOI: https://doi.org/10.1088/1742-6596/692/1/012011
Google Scholar
[8] Haliuk S. et. al.: Circuit implementation of Lozi ring-coupled map. Proc. of 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology, Kharkiv, 2017, 249–252 [https://doi.org/10.1109/INFOCOMMST.2017.8246390].
DOI: https://doi.org/10.1109/INFOCOMMST.2017.8246390
Google Scholar
[9] Kocarev L. et. al.: Chaos-Based Cryptography Theory, Algorithms and Applications. Springer 2011 [https://doi.org/10.1007/978-3-642-20542-2].
DOI: https://doi.org/10.1007/978-3-642-20542-2
Google Scholar
[10] Krulikovskyi O. et. al.: PRNG based on modified Tratas chaotic system. Modern information security 2, 2016, 69–77 [http://nbuv.gov.ua/UJRN/szi_2016_2_12].
Google Scholar
[11] Krulikovskyi O. et. al.: Testing timeseries ring-coupled map generated by on FPGA. Telecomunication and Informative Techologies 4, 2016, 24–29.
Google Scholar
[12] Krulikovskyi O., Haliuk S.: Periodicity of Timeseries Generated by Logistic Map. Part I. Security of Infocommunication Systems and Internet of Things 1(2), 2023, 02010 [https://doi.org/10.31861/sisiot2023.2.02010].
DOI: https://doi.org/10.31861/sisiot2023.2.02010
Google Scholar
[13] Lozi R.: Survey of Recent Applications of the Chaotic Lozi Map. Algorithms 16(491), 2023 [https://doi.org/10.3390/a16100491].
DOI: https://doi.org/10.3390/a16100491
Google Scholar
[14] Machicao J., Bruno O. M.: Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos 27(5), 2017, 053116 [https://doi.org/10.1063/1.4983836].
DOI: https://doi.org/10.1063/1.4983836
Google Scholar
[15] National Institute of Standards and Technology. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Spec. Publication 800-22, Rev. 1a, 2010.
Google Scholar
[16] Rodriguez-Vazquez A. et. al.: Chaos from Switched-Capacitor Circuits: Discrete Maps, Proc. of the IEEE, Special Issue on Chaotic Systems 75(8), 1987, 1090–1106 [https://doi.org/10.1109/PROC.1987.13852].
DOI: https://doi.org/10.1109/PROC.1987.13852
Google Scholar
[17] Shujun L. et. al.: On the dynamical degradation of digital piecewise linear chaotic maps. International journal of Bifurcation and Chaos 5(10), 2005, 3119–3151 [https://doi.org/10.1142/S0218127405014052].
DOI: https://doi.org/10.1142/S0218127405014052
Google Scholar
[18] The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness (accessed: 19.03.2024) [https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/].
Google Scholar
[19] Vázquez-Medina R. et. al.: Design of chaotic analog noise generators with logistic map and MOS QT circuits. Chaos, Solitons & Fractals 40(4), 2009, 1779–1793 [https://doi.org/10.1016/j.chaos.2007.09.088].
DOI: https://doi.org/10.1016/j.chaos.2007.09.088
Google Scholar
[20] Wang X. et. al.: A New Four-Dimensional Chaotic System and its Circuit Implementation. Frontiers in Physics 10, 2022 [https://doi.org/10.3389/fphy.2022.906138].
DOI: https://doi.org/10.3389/fphy.2022.906138
Google Scholar
[21] Wang Z., Liu S.: Design and Implementation of Simplified Symmetry Chaotic Circuit. Symmetry 14, 2022, 2299 [https://doi.org/10.3390/sym14112299].
DOI: https://doi.org/10.3390/sym14112299
Google Scholar
Authors
Oleh Krulikovskyio.krulikovskyi@chnu.edu.ua
Yuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0001-5995-6857
Authors
Serhii HaliukYuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0003-3836-2675
Authors
Ihor SafronovYuriy Fedkovych Chernivtsi National University Ukraine
Authors
Valentyn LesinskyiYuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0002-1259-1974
Statistics
Abstract views: 94PDF downloads: 56
Most read articles by the same author(s)
- Dmytro Vovchuk, Serhii Haliuk, Pavlo Robulets, Leonid Politanskyi, FREQUENCY MODULATION APPROACH BASED ON SPLIT-RING RESONATOR LOADED BY VARACTOR DIODE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 3 (2020)
- Serhii Haliuk, Oleh Krulikovskyi, Vitalii Vlasenko, STUDYING THE PROPERTIES OF PIXELS PERMUTATIONS BASED ON DISCRETIZED STANDARD MAP , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 1 (2020)
- Dmytro Vovchuk, Serhii Haliuk, Leonid Politanskyy, DISTORTIONLESS SIGNALS TRANSFER THROUGH A WIRE MEDIA METASTRUCTURE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 8 No. 1 (2018)