TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS

Oleh Krulikovskyi

o.krulikovskyi@chnu.edu.ua
Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0001-5995-6857

Serhii Haliuk


Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0003-3836-2675

Ihor Safronov


Yuriy Fedkovych Chernivtsi National University (Ukraine)

Valentyn Lesinskyi


Yuriy Fedkovych Chernivtsi National University (Ukraine)
https://orcid.org/0000-0002-1259-1974

Abstract

This manuscript explores a two-dimensional hyperchaotic map for generating chaotic oscillations. Hyperchaotic maps are finding increasing applications in various scientific and technological fields due to the unique properties of their generated oscillations. The studied map, based on two interconnected piecewise-linear functions, is one of the simplest for generating oscillations with a predetermined distribution of values across a continuous parameter space. This simplicity allows for wide applicability in various contexts. The paper presents simulation results demonstrating control over the parameters of the dynamic modes. Building upon these modeling results, a two-dimensional hyperchaotic system is implemented using an electric circuit. The chosen map is attractive due to its inherent simplicity and ease of parameter control. By adjusting these parameters, the distribution of the generated signal's values can be manipulated. The circuit consists of two symmetrical sections connected via feedback loops, employing four amplifiers with variable gain. The gain values act as the circuit's implementation of the control parameters. Chaotic oscillations are generated by applying a delayed clock signal from an external square wave generator to circuit elements. The obtained experimental results exhibit excellent agreement with the simulation data.


Keywords:

hyperchaotic map, chaotic oscillations, variable distribution, circuit implementation

[1] Alvarez G., Shujun L.: Some basic cryptographic requirements for chaos-based cryptosystems. International journal of bifurcation and chaos 16(08), 2006, 2129–2151 [https://doi.org/10.1142/S0218127406015970].
DOI: https://doi.org/10.1142/S0218127406015970   Google Scholar

[2] Callegati F. et. al.: Traffic Engineering: A Practical Approach. Springer, 2022 [https://doi.org/10.1007/978-3-031-09589-4].
DOI: https://doi.org/10.1007/978-3-031-09589-4   Google Scholar

[3] Corinto F. et. al.: Memristor-based chaotic circuit for pseudo-random sequence generators, Proc. of 18th Mediterranean Electrotechnical Conference MELECON 2016, Limassol, Cyprus, 2016 [https://doi.org/10.1109/MELCON.2016.7495319].
DOI: https://doi.org/10.1109/MELCON.2016.7495319   Google Scholar

[4] Endo T., Yokota J.: Generation of White Noise by Using Chaos in Practical Phase-Locked Loop Integrated Circuit Module. IEEE International Symposium on Circuits and Systems ISCAS, New Orleans, LA, USA 2007, 201–204 [https://doi.org/10.1109/ISCAS.2007.378311].
DOI: https://doi.org/10.1109/ISCAS.2007.378311   Google Scholar

[5] Garasym O. et. al.: How useful randomness for cryptography can emerge from multicore-implemented complex networks of chaotic maps. Journal of Difference Equations and Applications 23(5), 2017, 821–859 [https://doi.org/10.1080/10236198.2017.1287176].
DOI: https://doi.org/10.1080/10236198.2017.1287176   Google Scholar

[6] Garasym O. et. al.: New Nonlinear CPRNG Based on Tent and Logistic Maps. Complex Systems and Networks. Lü J. et. al. (ed.): Understanding Complex Systems. Springer 2016 [https://doi.org/10.1007/978-3-662-47824-0_6].
DOI: https://doi.org/10.1007/978-3-662-47824-0_6   Google Scholar

[7] Garasym O. et. al.: Robust PRNG based on homogeneously distributed chaotic dynamics. Journal of Physics: Conference Series 692(1), 2016 [https://doi.org/10.1088/1742-6596/692/1/012011].
DOI: https://doi.org/10.1088/1742-6596/692/1/012011   Google Scholar

[8] Haliuk S. et. al.: Circuit implementation of Lozi ring-coupled map. Proc. of 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology, Kharkiv, 2017, 249–252 [https://doi.org/10.1109/INFOCOMMST.2017.8246390].
DOI: https://doi.org/10.1109/INFOCOMMST.2017.8246390   Google Scholar

[9] Kocarev L. et. al.: Chaos-Based Cryptography Theory, Algorithms and Applications. Springer 2011 [https://doi.org/10.1007/978-3-642-20542-2].
DOI: https://doi.org/10.1007/978-3-642-20542-2   Google Scholar

[10] Krulikovskyi O. et. al.: PRNG based on modified Tratas chaotic system. Modern information security 2, 2016, 69–77 [http://nbuv.gov.ua/UJRN/szi_2016_2_12].
  Google Scholar

[11] Krulikovskyi O. et. al.: Testing timeseries ring-coupled map generated by on FPGA. Telecomunication and Informative Techologies 4, 2016, 24–29.
  Google Scholar

[12] Krulikovskyi O., Haliuk S.: Periodicity of Timeseries Generated by Logistic Map. Part I. Security of Infocommunication Systems and Internet of Things 1(2), 2023, 02010 [https://doi.org/10.31861/sisiot2023.2.02010].
DOI: https://doi.org/10.31861/sisiot2023.2.02010   Google Scholar

[13] Lozi R.: Survey of Recent Applications of the Chaotic Lozi Map. Algorithms 16(491), 2023 [https://doi.org/10.3390/a16100491].
DOI: https://doi.org/10.3390/a16100491   Google Scholar

[14] Machicao J., Bruno O. M.: Improving the pseudo-randomness properties of chaotic maps using deep-zoom. Chaos 27(5), 2017, 053116 [https://doi.org/10.1063/1.4983836].
DOI: https://doi.org/10.1063/1.4983836   Google Scholar

[15] National Institute of Standards and Technology. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Spec. Publication 800-22, Rev. 1a, 2010.
  Google Scholar

[16] Rodriguez-Vazquez A. et. al.: Chaos from Switched-Capacitor Circuits: Discrete Maps, Proc. of the IEEE, Special Issue on Chaotic Systems 75(8), 1987, 1090–1106 [https://doi.org/10.1109/PROC.1987.13852].
DOI: https://doi.org/10.1109/PROC.1987.13852   Google Scholar

[17] Shujun L. et. al.: On the dynamical degradation of digital piecewise linear chaotic maps. International journal of Bifurcation and Chaos 5(10), 2005, 3119–3151 [https://doi.org/10.1142/S0218127405014052].
DOI: https://doi.org/10.1142/S0218127405014052   Google Scholar

[18] The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness (accessed: 19.03.2024) [https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/].
  Google Scholar

[19] Vázquez-Medina R. et. al.: Design of chaotic analog noise generators with logistic map and MOS QT circuits. Chaos, Solitons & Fractals 40(4), 2009, 1779–1793 [https://doi.org/10.1016/j.chaos.2007.09.088].
DOI: https://doi.org/10.1016/j.chaos.2007.09.088   Google Scholar

[20] Wang X. et. al.: A New Four-Dimensional Chaotic System and its Circuit Implementation. Frontiers in Physics 10, 2022 [https://doi.org/10.3389/fphy.2022.906138].
DOI: https://doi.org/10.3389/fphy.2022.906138   Google Scholar

[21] Wang Z., Liu S.: Design and Implementation of Simplified Symmetry Chaotic Circuit. Symmetry 14, 2022, 2299 [https://doi.org/10.3390/sym14112299].
DOI: https://doi.org/10.3390/sym14112299   Google Scholar

Download


Published
2024-09-30

Cited by

Krulikovskyi, O., Haliuk, S., Safronov, I., & Lesinskyi, V. (2024). TWO-DIMENSIONAL HYPERCHAOTIC MAP FOR CHAOTIC OSCILLATIONS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 29–34. https://doi.org/10.35784/iapgos.6165

Authors

Oleh Krulikovskyi 
o.krulikovskyi@chnu.edu.ua
Yuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0001-5995-6857

Authors

Serhii Haliuk 

Yuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0003-3836-2675

Authors

Ihor Safronov 

Yuriy Fedkovych Chernivtsi National University Ukraine

Authors

Valentyn Lesinskyi 

Yuriy Fedkovych Chernivtsi National University Ukraine
https://orcid.org/0000-0002-1259-1974

Statistics

Abstract views: 94
PDF downloads: 56


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.