STUDYING THE PROPERTIES OF PIXELS PERMUTATIONS BASED ON DISCRETIZED STANDARD MAP

Serhii Haliuk

s.haliuk@chnu.edu.ua
Chernivtsi National University, Department of Radio Engineering and Information Security (Ukraine)
http://orcid.org/0000-0003-3836-2675

Oleh Krulikovskyi


Chernivtsi National University, Department of Radio Engineering and Information Security (Ukraine)
http://orcid.org/0000-0001-5995-6857

Vitalii Vlasenko


Chernivtsi National University, Department of Radio Engineering and Information Security (Ukraine)
http://orcid.org/0000-0002-9085-5787

Abstract

In this article, we described specifics of pixels permutations based on the discretized, two-dimensional Chirikov standard map. Some properties of the discretized Chirikov map can be used by an attacker to recover the original images that are studied. For images with dimensions N ´ N the vulnerability of permutations allows for brute force attacks, and shown is the ability of an intruder to restore the original image without setting the value of keys permutations. Presented is also, successful cryptographic attack on the encrypted image through permutation of pixels. It is found that for images with dimension N ´ N the maximum number of combinations is equal to NN-1. A modified Chirikov map was proposed with improved permutation properties, due to the use of two nonlinearities, that increase the keys space to N2!.


Keywords:

discretized standard map, permutation of pixels, key space, precision of computing

Alvarez, G., Li, S. J.: Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. Inter. Journal of Bif. and Chaos 16(8)/2006, 2129–2151.
DOI: https://doi.org/10.1142/S0218127406015970   Google Scholar

Argyris A., Syvridis D., Larger L., Annovazzi-Lodi V., Colet P., Fischer I., García-Ojalvo J., Mirasso C.R., Pesquera L., Shore K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438(7066)/2005, 343–346.
DOI: https://doi.org/10.1038/nature04275   Google Scholar

Arroyo D., Alvarez G., Fernandez V.: A basic framework for the cryptanalysis of digital chaos-based cryptography. Proc. of the 6th International Multi-Conference on Systems, Signals and Devices, Djerba 2009, 58–63.
DOI: https://doi.org/10.1109/SSD.2009.4956652   Google Scholar

Chirikov B. V.: Research concerning the theory of nonlinear resonance and stochasticity Preprint 267, Institute of Nuclear Physics, Novosibirsk, 1969, (Engl. Trans., CERN Trans. 1971, 71–40).
  Google Scholar

Fridrich J.: Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. Inter. Journal of Bif. and Chaos 8(6)/1998, 1259–284.
DOI: https://doi.org/10.1142/S021812749800098X   Google Scholar

Hussain I., Shah T.: Literature survey on nonlinear components and chaotic nonlinear components of block ciphers. Nonlinear Dynamics 74/2013, 869–904.
DOI: https://doi.org/10.1007/s11071-013-1011-8   Google Scholar

Jolfaei A., Mirghadri A.: An image encryption approach using chaos and stream cipher. Journal of Theoretical and Applied Information Technology 19(2)/2010, 117–125.
  Google Scholar

Kocarev L., Lian S. (Eds.): Chaos-Based Cryptography Theory, Algorithms and Applications. Springer-Verlag Berlin Heidelberg, 2011.
DOI: https://doi.org/10.1007/978-3-642-20542-2   Google Scholar

Lian S. G., Sun J., Wang Z.: A block cipher based on a suitable use of chaotic standard map. Chaos, Solitons and Fractals 26(1)/2005, 117–29.
DOI: https://doi.org/10.1016/j.chaos.2004.11.096   Google Scholar

Lian S., Sun J., Wang Z.: Security analysis of a chaos-based image encryption algorithm. Phisyca A 351(2)/2005, 645–661.
DOI: https://doi.org/10.1016/j.physa.2005.01.001   Google Scholar

National Institute of Standards and Technology (May 11, 2010). NIST Digital Library of Mathematical Functions. Section 26.4. Retrieved August 30, 2010.
  Google Scholar

Solak, E., Cokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of fridrich’s chaotic image encryption. Int. J. Bifurcation Chaos 20(5), 1405–1413.
DOI: https://doi.org/10.1142/S0218127410026563   Google Scholar

von Bremen H. F., Udwadia F. E., Proskurowski W.: An efficient QR based method for the computation of Lyapunov exponents. Physica D 101/1997, 1–16.
DOI: https://doi.org/10.1016/S0167-2789(96)00216-3   Google Scholar

Warren H. S. .: Hacker’s Delight. Addison-Wesley Professional. 2012.
  Google Scholar

Yuan G., Yorke J. A.: Collapsing of chaos in one dimensional maps. Physica D: Nonlinear Phenomena 136/2000, 18–30.
DOI: https://doi.org/10.1016/S0167-2789(99)00147-5   Google Scholar

Download


Published
2020-03-30

Cited by

Haliuk, S., Krulikovskyi, O., & Vlasenko, V. (2020). STUDYING THE PROPERTIES OF PIXELS PERMUTATIONS BASED ON DISCRETIZED STANDARD MAP. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(1), 48–51. https://doi.org/10.35784/iapgos.907

Authors

Serhii Haliuk 
s.haliuk@chnu.edu.ua
Chernivtsi National University, Department of Radio Engineering and Information Security Ukraine
http://orcid.org/0000-0003-3836-2675

Authors

Oleh Krulikovskyi 

Chernivtsi National University, Department of Radio Engineering and Information Security Ukraine
http://orcid.org/0000-0001-5995-6857

Authors

Vitalii Vlasenko 

Chernivtsi National University, Department of Radio Engineering and Information Security Ukraine
http://orcid.org/0000-0002-9085-5787

Statistics

Abstract views: 339
PDF downloads: 8880