WDROŻENIE SYSTEMU POZYSKIWANIA EKG OPARTEGO NA SZTUCZNEJ INTELIGENCJI W CELU WYKRYWANIA NIEPRAWIDŁOWOŚCI SERCA

Achraf Benba

achraf.benba@um5s.net.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Maroko)
https://orcid.org/0000-0001-7939-0790

Fatima Zahra El Attaoui


Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies (Maroko)
http://orcid.org/0009-0001-0196-0500

Sara Sandabad


Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems, Hassan II University of Casablanca (Maroko)
http://orcid.org/0000-0002-0813-6178

Abstrakt

Elektrokardiogram (EKG) to powszechny test, który mierzy aktywność elektryczną serca. W zapisie EKG można zauważyć kilka nieprawidłowości serca, w tym arytmie, które są jedną z głównych przyczyn śmiertelności sercowej na całym świecie. Celem społeczności naukowej jest dokładna i zautomatyzowana analiza układu sercowo-naczyniowego, zwłaszcza biorąc pod uwagę dojrzałość technologii sztucznej inteligencji i jej wkład w obszar zdrowia. Celem tych wysiłków jest stworzenie systemu akwizycji i wykorzystanie sztucznej inteligencji do klasyfikacji odczytów EKG. System ten składa się z dwóch części: pierwsza to akwizycja sygnału za pomocą modułu EKG AD8232; uzyskany sygnał jest pojedynczą pochodną, która została wzmocniona i przefiltrowana. Druga sekcja to klasyfikacja identyfikacji chorób serca; sugerowany model to głęboka konwolucyjna sieć neuronowa z 12 warstwami, która była w stanie sklasyfikować pięć typów uderzeń serca z bazy danych arytmii MIT-BIH. Wyniki były zachęcające i zbudowano system wbudowany.


Słowa kluczowe:

elektrokardiogram, arytmie, sztuczna inteligencja, konwolucyjna sieć neuronowa

AD8232 DS. Single-Lead, Heart Rate Monitor Front End. Analog Device, 2013.
  Google Scholar

Ahsan M. M., Siddique Z.: Machine learning-based heart disease diagnosis: A systematic literature review. Artificial Intelligence in Medicine 29, 2022, 102289 [http://doi.org/10.1016/j.artmed.2022.102289].
DOI: https://doi.org/10.1016/j.artmed.2022.102289   Google Scholar

Atal D. K., Singh M.: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Computer Methods and Programs in Biomedicine, 196, 2020, 105607 [http://doi.org/10.1016/j.cmpb.2020.105607].
DOI: https://doi.org/10.1016/j.cmpb.2020.105607   Google Scholar

Day T. G. et al.: Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenatal Diagnosis 41(6), 2021, 733–742 [http://doi.org/10.1002/pd.5892].
DOI: https://doi.org/10.1002/pd.5892   Google Scholar

Farinha J. M. et al.: Frequent premature atrial contractions as a signalling marker of atrial cardiomyopathy, incident atrial fibrillation and stroke. Cardiovascular research, 2022, cvac054 [http://doi.org/10.1093/cvr/cvac054].
DOI: https://doi.org/10.1093/cvr/cvac054   Google Scholar

Giudicessi J. R. et al.: Artificial intelligence–enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device. Circulation 143(13), 2021, 1274–1286 [http://doi.org/10.1161/circulationaha.120.050231].
DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050231   Google Scholar

Han C. et al.: QRS complexes and T waves localization in multi-lead ECG signals based on deep learning and electrophysiology knowledge. Expert Systems with Applications 199, 2022, 117187 [http://doi.org/10.1016/j.eswa.2022.117187].
DOI: https://doi.org/10.1016/j.eswa.2022.117187   Google Scholar

Hassan S. U. et al.: Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digital Health 8, 2022 [http://doi.org/10.1177/20552076221102766].
DOI: https://doi.org/10.1177/20552076221102766   Google Scholar

Higuchi K. et al.: How to use bipolar and unipolar electrograms for selecting successful ablation sites of ventricular premature contractions. Heart Rhythm 19(7), 2022, 1067–1073 [http://doi.org/10.1016/j.hrthm.2021.12.035].
DOI: https://doi.org/10.1016/j.hrthm.2021.12.035   Google Scholar

Karri M., Annavarapu C. S.: A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features. Expert Systems with Applications 214, 2023, 119221 [http://doi.org/10.1016/j.eswa.2022.119221].
DOI: https://doi.org/10.1016/j.eswa.2022.119221   Google Scholar

Kwon J. M. et al.: Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features. European Heart Journal-Digital Health 2(1), 2021, 106–116 [http://doi.org/10.1093/ehjdh/ztaa015].
DOI: https://doi.org/10.1093/ehjdh/ztaa015   Google Scholar

Li T., Zhou M.: ECG classification using wavelet packet entropy and random forests. Entropy 18(8), 2016, 285 [http://doi.org/10.3390/e18080285].
DOI: https://doi.org/10.3390/e18080285   Google Scholar

Moody G. B., Mark R. G.: The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine 20(3), 2001, 45–50 [http://doi.org/10.1109/51.932724].
DOI: https://doi.org/10.1109/51.932724   Google Scholar

Rahman M. A. et al.: Remote monitoring of heart rate and ECG signal using ESP32. 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 2021, 604–610 [http://doi.org/10.1109/AEMCSE51986.2021.00127].
DOI: https://doi.org/10.1109/AEMCSE51986.2021.00127   Google Scholar

Reis C. Q., Robar J. L.: Evaluation of the feasibility of cardiac gating for SBRT of ventricular tachycardia based on real‐time ECG signal acquisition. Journal of Applied Clinical Medical Physics, 2022, e13814 [http://doi.org/10.1002/acm2.13814].
DOI: https://doi.org/10.1002/acm2.13814   Google Scholar

Ribeiro J. M. et al.: Artificial intelligence and transcatheter interventions for structural heart disease: a glance at the (near) future. Trends in cardiovascular medicine 32(3), 2022, 153–159 [http://doi.org/10.1016/j.tcm.2021.02.002].
DOI: https://doi.org/10.1016/j.tcm.2021.02.002   Google Scholar

Vamseekrishna A. et al.: Low-Cost ECG-Based Heart Monitoring System with Ubidots Platform. Embracing Machines and Humanity Through Cognitive Computing and IoT, 2023 [http://doi.org/10.1007/978-981-19-4522-9_6].
DOI: https://doi.org/10.1007/978-981-19-4522-9_6   Google Scholar

Vinther M. et al.: A randomized trial of His pacing versus biventricular pacing in symptomatic HF patients with left bundle branch block (His-alternative). Clinical Electrophysiology 7(11), 2021, 1422–1432 [http://doi.org/10.1016/j.jacep.2021.04.003].
DOI: https://doi.org/10.1016/j.jacep.2021.04.003   Google Scholar

Zhu K. et al.: The physiologic mechanisms of paced QRS narrowing during left bundle branch pacing in right bundle branch block patients. Frontiers in Cardiovascular Medicine 9, 2022 [http://doi.org/10.3389/fcvm.2022.835493].
DOI: https://doi.org/10.3389/fcvm.2022.835493   Google Scholar


Opublikowane
2023-03-31

Cited By / Share

Benba, A., Zahra El Attaoui, F., & Sandabad, S. (2023). WDROŻENIE SYSTEMU POZYSKIWANIA EKG OPARTEGO NA SZTUCZNEJ INTELIGENCJI W CELU WYKRYWANIA NIEPRAWIDŁOWOŚCI SERCA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(1), 22–25. https://doi.org/10.35784/iapgos.3387

Autorzy

Achraf Benba 
achraf.benba@um5s.net.ma
Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Maroko
https://orcid.org/0000-0001-7939-0790

Autorzy

Fatima Zahra El Attaoui 

Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies Maroko
http://orcid.org/0009-0001-0196-0500

Autorzy

Sara Sandabad 

Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems, Hassan II University of Casablanca Maroko
http://orcid.org/0000-0002-0813-6178

Statystyki

Abstract views: 258
PDF downloads: 277