BADANIE TRYBÓW ROZRUCHU JEDNOFAZOWYCH SILNIKÓW ASYNCHRONICZNYCH PRZY ZMIANIE PARAMETRÓW UZWOJEŃ STOJANA, KONDENSATORA PRZESUWAJĄCEGO FAZĘ I NAPIĘCIA ZASILANIA

Suad Omar Aldaikh


Al-Balqa Applied University, Department of Technical Science (Jordania)

Mohannad O. Rawashdeh


Al-Balqa Applied University, Department of Mechanical Engineering (Jordania)

Lina H. Hussienat


Al-Balqa Applied University, Department of Technical Science (Jordania)
https://orcid.org/0000-0002-8276-4906

Mohamed Qawaqzeh

qawaqzeh@bau.edu.jo
Al-Balqa Applied University, Department of Electrical and Electronics Engineering (Jordania)
https://orcid.org/0000-0001-7027-5577

Oleksiy Iegorov


O. M. Beketov National University of Urban Economy in Kharkiv, Department of Alternative Energy (Ukraina)
https://orcid.org/0000-0003-2599-1624

Olga Iegorova


National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies (Ukraina)
https://orcid.org/0000-0001-8593-1557

Mykola Kundenko


National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies (Ukraina)
https://orcid.org/0000-0002-5841-4367

Dmytro Danylchenko


National Technical University "Kharkiv Polytechnic Institute", Department of Electrical Energy Transmission (Ukraina)
https://orcid.org/0000-0001-7912-1849

Oleksandr Miroshnyk


State Biotechnological University, Department of Electricity Supply and Energy Management (Ukraina)

Taras Shchur


Cyclone Manufacturing Inc, Mississauga (Kanada)

Abstrakt

Jednofazowe silniki asynchroniczne znajdują szerokie zastosowanie w sprzęcie AGD, rolnictwie, handlu, medycynie i innych dziedzinach, gdzie wymagany jest tani nieregulowany napęd elektryczny zasilany z jednofazowej sieci prądu przemiennego. Produkowane są w milionach sztuk rocznie. Dlatego zawsze dużą wagę przywiązywano do badań mających na celu zmniejszenie zużycia zasobów w produkcji i eksploatacji tych silników, poprawę parametrów wyjściowych i zwiększenie ich konkurencyjności. W artykule przeprowadzono badania momentu rozruchowego przy rozruchu jednofazowych silników asynchronicznych w zależności od fazy początkowej napięcia sieci jednofazowej zasilającej uzwojenie stojana, od kątów fazowych napięcia sieciowego przy ustalonych kątach fazowych rozruchu. meandrowy. Analizowano także wpływ rezystancji czynnej i indukcyjnej rezystancji uzwojenia stojana i zastępczego uzwojenia wirnika oraz rezystancji pojemności kondensatora na charakterystykę rozruchową silnika.


Słowa kluczowe:

silniki indukcyjne jednofazowe, moment rozruchowy, prąd rozruchowy, opór powietrza, kondensator

Al-Rawashdeh A. et al.: The tooth factor effect on the harmonics of large electrical machines. Bulletin of Electrical Engineering and Informatics 9(4), 2020, 1677–1684. [https://doi.org/10.11591/eei.v9i4.1565].
  Google Scholar

Bianchi N.: Electrical machine analysis using finite elements. CRC press. 2017, [https://doi.org/10.1201/9781315219295].
  Google Scholar

Chasiotis I. D., Karnavas Y. L.: A novel design methodology for the compliance of single-phase induction motors with recent industrial premium efficiency standards. Engineering Reports 2(11), 2020 [https://doi.org/10.1002/eng2.12265].
  Google Scholar

Chasiotis I. D., Karnavas Y. L., Scuiller F.: Effect of rotor bars shape on the single-phase induction motors performance: An analysis toward their efficiency improvement. Energies 15(3), 2022, 717 [https://doi.org/10.3390/en15030717]
  Google Scholar

Cheng M., Han P., Hua W.: General airgap field modulation theory for electrical machines IEEE Transactions on Industrial Electronics 64(8), 2017, 6063–6074 [https://doi.org/10.1109/TIE.2017.2682792].
  Google Scholar

da Silva L. E. B. et al.: Differential evolution-based air-gap torque method approach for induction motor efficiency estimation. 18th International Conference on Intelligent System Application to Power Systems (ISAP), 2015 [https://doi.org/10.1109/ISAP.2015.7325521].
  Google Scholar

Dmitriy S., Vladimir P.: Short review of development approaches of mathematical models for induction motor nonsymmetrical modes research. XVIII International Scientific Technical Conference Alternating Current Electric Drives – ACED, 2021, 1–5 [https://doi.org/10.1109/ACED50605.2021.9462311].
  Google Scholar

Finkelshtein V. et al.: The analytic-field method for calculating the squirrel-cage induction motor parameters. Scientific Bulletin of National Mining University 3, 2020 [https://doi.org/10.33271/nvngu/2020-3/067].
  Google Scholar

Goolak S. et al.: Determination of parameters of induction electric machines with asymmetrical windings of electric locomotives. Communications-Scientific letters of the University of Zilina 21(2), 2019, 24–31 [https://doi.org/10.26552/com.C.2019.2.24-31].
  Google Scholar

Gritli Y. et al.: A diagnostic space vector-based index for rotor electrical fault detection in wound-rotor induction machines under speed transient. IEEE Transactions on Industrial Electronics 64(5), 2017, 3892–3902 [https://doi.org/10.1109/TIE.2017.2652389].
  Google Scholar

Guedes J. J. et al.: Parameters estimation of three-phase induction motors using differential evolution. Electric Power Systems Research 154, 2018, 204–212 [https://doi.org/10.1016/j.epsr.2017.08.033].
  Google Scholar

Goolak S., Gubarevych O., Yermolenko E.: Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies 2(2), 2020 [https://doi.org/10.15587/1729-4061.2020.199559].
  Google Scholar

Havrylenko Y. et al.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23, 2021, 923 [https://doi.org/10.3390/e23070923].
  Google Scholar

Iegorov O. et al.: Single-phase induction motors winding parameters optimization with maximum efficiency. IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, 1–4 [https://doi.org/10.1109/PAEP49887.2020.9240878].
  Google Scholar

Iegorov O. et al.: The Single-Phase Induction Motor Windings Parameters Experimental Optimization at a Given Capacity of the Phase-Shifting Capacitor. IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2021, 1–4 [https://doi.org/10.1109/MEES52427.2021.9598620].
  Google Scholar

Iegorov O., Iegorova O., Miroshnyk O., Cherniuk A.: A calculated determination and experimental refinement of the optimal value of the single-phase induction motor transformation ratio. Energetika 67(1-2), 2021 [https://doi.org/10.6001/energetika.v67i1.4483].
  Google Scholar

Iegorov O., Iegorova O., Miroshnyk O., Savchenko, O.: Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 66(1), 2020 [https://doi.org/10.6001/energetika.v66i1.4295].
  Google Scholar

Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
  Google Scholar

Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
  Google Scholar

Komada P. et al.: The incentive scheme for maintaining or improving power supply quality. Przegląd Elektrotechniczny 5, 2019, 79–82 [https://doi.org/10.15199/48.2019.05.20].
  Google Scholar

Koti H. N. et al.: On shortening the numerical transient in time-stepping finite element analysis of induction motors: Method implementation. IEEE International Electric Machines & Drives Conference – IEMDC, 2019, 1157–1162 [https://doi.org/10.1109/IEMDC.2019.8785306].
  Google Scholar

Lezhenkin O. et al.: Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series 1781, 2020, 012016 [https://doi.org/10.1088/1742-6596/1781/1/012016].
  Google Scholar

Malozyomov B. V., Martyushev N. V., Sorokova S. N.: Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter. Mathematics 11(10), 2023 [https://doi.org/10.3390/math11102394].
  Google Scholar

Mademlis C., Kioskeridis I., Theodoulidis T. Optimization of single-phase induction Motors-part I: maximum energy efficiency control. IEEE Transactions on Energy conversion 20(1), 2005, 187–195 [https://doi.org/10.1109/TEC.2004.842386].
  Google Scholar

Mousavi M. S. et al.: Integral sliding mode observer-based ultralocal model for finite-set model predictive current control of induction motor. Journal of Emerging and Selected Topics in Power Electronics 10(3), 2021, 2912–2922 [https://doi.org/10.1109/JESTPE.2021.3110797].
  Google Scholar

Neyman V. Y., Markov A. V.: Model of electromechanical energy converter with variable inductance. 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 2019, 765–769 [https://doi.org/10.1109/EDM.2019.8823171].
  Google Scholar

Qawaqzeh M.Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 14, 2021, 4780 [https://doi.org/10.3390/en14164780].
  Google Scholar

Redinz J. A.: The induction motor. European Journal of Physics 36(5), 2015 [https://doi.org/10.1088/0143-0807/36/5/055008].
  Google Scholar

Sarac V., Atanasova-Pacemska T.: Multiparameter analysis for efficiency improvement of single-phase capacitor motor. Mathematical Problems in Engineering 2019. [https://doi.org/10.1155/2019/5131696].
  Google Scholar

Sarac V., Trajchevski N.: Impact of capacitor on operating characteristics of single-phase motor. 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2019, 1–5 [https://doi.org/10.1109/ELMA.2019.8771599].
  Google Scholar

Slunjski M. et al.: Symmetrical/asymmetrical winding reconfiguration in multiphase machines. IEEE Access 8, 2020. 12835–12844 [https://doi.org/10.1109/ACCESS.2020.2965652].
  Google Scholar

Vukosavic S. N.: Electrical machines. Springer Science & Business Media, 2012 [https://doi.org/10.1007/978-1-4614-0400-2].
  Google Scholar


Opublikowane
2024-06-30

Cited By / Share

Aldaikh, S. O., Rawashdeh, M. O., Hussienat, L. H., Qawaqzeh, M., Iegorov, O., Iegorova, O., … Shchur, T. (2024). BADANIE TRYBÓW ROZRUCHU JEDNOFAZOWYCH SILNIKÓW ASYNCHRONICZNYCH PRZY ZMIANIE PARAMETRÓW UZWOJEŃ STOJANA, KONDENSATORA PRZESUWAJĄCEGO FAZĘ I NAPIĘCIA ZASILANIA. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(2), 34–41. https://doi.org/10.35784/iapgos.5928

Autorzy

Suad Omar Aldaikh 

Al-Balqa Applied University, Department of Technical Science Jordania

Autorzy

Mohannad O. Rawashdeh 

Al-Balqa Applied University, Department of Mechanical Engineering Jordania

Autorzy

Lina H. Hussienat 

Al-Balqa Applied University, Department of Technical Science Jordania
https://orcid.org/0000-0002-8276-4906

Autorzy

Mohamed Qawaqzeh 
qawaqzeh@bau.edu.jo
Al-Balqa Applied University, Department of Electrical and Electronics Engineering Jordania
https://orcid.org/0000-0001-7027-5577

Autorzy

Oleksiy Iegorov 

O. M. Beketov National University of Urban Economy in Kharkiv, Department of Alternative Energy Ukraina
https://orcid.org/0000-0003-2599-1624

Autorzy

Olga Iegorova 

National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies Ukraina
https://orcid.org/0000-0001-8593-1557

Autorzy

Mykola Kundenko 

National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies Ukraina
https://orcid.org/0000-0002-5841-4367

Autorzy

Dmytro Danylchenko 

National Technical University "Kharkiv Polytechnic Institute", Department of Electrical Energy Transmission Ukraina
https://orcid.org/0000-0001-7912-1849

Autorzy

Oleksandr Miroshnyk 

State Biotechnological University, Department of Electricity Supply and Energy Management Ukraina

Autorzy

Taras Shchur 

Cyclone Manufacturing Inc, Mississauga Kanada

Statystyki

Abstract views: 21
PDF downloads: 12


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.