[1] Adaikkappan M., Sathiyamoorthy N.: Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review. Int. J. Energy Res. 46(5), 2021, 2141–2165 [https://doi.org/10.1002/er.7339].
[2] Al_Issa H. A. et al.: Correct Cross-Section of Cable Screen in a Medium Voltage Collector Network with Isolated Neutral of a Wind Power Plant, Energies 14, 2021, 3026 [https://doi.org/10.3390/en14113026].
[3] Al_Issa H. et al.: Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation. Energies 15(6), 2022 [https://doi.org/10.3390/en15062024].
[4] Bashir T. et al.: A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater. 1, 2021, 100019.
[5] Belik M.: Optimisation of energy accumulation for renewable energy sources. Renew. Energy Power Qual. J. 2021, 19, 205–210 [https://doi.org/10.24084/repqj19.258].
[6] Halko S., Suprun O., Miroshnyk O.: Influence of Temperature on Energy Performance Indicators of Hybrid Solar Panels Using Cylindrical Cogeneration Photovoltaic Modules. 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 132–136 [https://doi.org/10.1109/KhPIWeek53812.2021.9569975].
[7] Hannan M. A. et al.: Impact assessment of battery energy storage systems towards achieving sustainable development goals, J. Energy Storage 42, 2021, 103040 [https://doi.org/10.1016/j.est.2021.103040].
[8] Jamil M. et al.: Hybrid Anode Materials for Rechargeable Batteries – A Review of Sn/TiO2 Based Nanocomposites. Energy Rep. 7, 2021, 2836, 2836–2848 [https://doi.org/10.1016/j.egyr.2021.05.004].
[9] Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
[10] Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
[11] Komada P. et al.: The incentive scheme for maintaining or improving power supply quality. Przegląd Elektrotechniczny 5, 2019, 79–82 [https://doi.org/10.15199/48.2019.05.20].
[12] Kumar R., Goel V.: A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review. J. Energy Storage 71, 2023, 108025 [https://doi.org/10.1016/j.est.2023.108025].
[13] Lakshmi G. S. et al.: Battery Energy Storage Technologies for Sustainable Electric Vehicles and Grid Applications. Journal of Physics: Conference Series 1495, 2020, 012014 [https://doi.org/10.1088/1742-6596/1495/1/012014].
[14] Lezhenkin O. M. et al.: Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, International Conference on Applied Sciences (ICAS 2020), Hunedoara, Romania, 20–22 May 2020, 1781, 12016 [https://doi.org/10.1088/1742-6596/1781/1/012016].
[15] Lezhniuk P., Buslavets O. Rubanenko O.: Balancing electricity generation and consumption in a system with renewable energy sources. 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 63–68 [https://doi.org/10.1109/KhPIWeek53812.2021.9570087].
[16] Makovenko E. et al.: Single-phase three-level qZ-source inverter connected to the grid with battery storage and active power decoupling function. 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 November 2018, 1–6 [https://doi.org/10.1109/RTUCON.2018.8659843].
[17] Markowska K. et al.: Analysis and improvement of power quality in the onboard electrical power systems within a self-propelled floating crane. International Journal of Electrical Power & Energy Systems 161, 2024, 110179 [https://doi.org/10.1016/j.ijepes.2024.110179].
[18] Martinko D. et al.: Planning of the Optimal Performance of Household Photovoltaics and Battery Storage within Consideration of Investment Return. Przeglad Elektrotechniczny 100(1), 2024, 105–111 [https://doi.org/10.15199/48.2024.01.22].
[19] Miroshnuk O., Tymchuk S.: Uniform distribution of loads in the electric system 0.38/0.22 kV using genetic algorithms. Technical Electrodynamics 4, 2013, 67–73.
[20] Miroshnyk O. et al.: Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies 16, 2023, 2638 [https://doi.org/10.3390/en16062638].
[21] Patel T.: A Comparative Study of Lithium-ion and Sodium-ion Batteries: Characteristics, Performance, and Challenges. Friedrich Alexander-Universität Erlangen Nürnberg (FAU), 14 March 2023 [https://open.fau.de/handle/openfau/21891].
[22] Qawaqzeh M. et al.: The assess reduction of the expected energy not-supplied to consumers in medium voltage distribution systems after installing a sectionalizer in optimal place. Sustain. Energy, Grids and Networks 34, 2023, 101035 [https://doi.org/10.1016/j.segan.2023.101035].
[23] Qawaqzeh M. Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 14, 2021, 4780 [https://doi.org/10.3390/en14164780].
[24] Rudola A. et al.: Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9, 2021, 8279–8302 [https://doi.org/10.1039/D1TA00376C].
[25] Rudola A.: The Future of Clean Transportation: Sodium-ion Batteries [http://www.bridgeindia.org.uk].
[26] Sayahpour B. et al.: Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy Sustain. 9, 2022, 183–197 [https://doi.org/10.1557/s43581-022-00029-9].
[27] Schwarz S.: Lithium Iron Phosphate – enabling the future of individual electric mobility, 2022 [https://www.e-motec.net/lithium-iron-electric-mobility].
[28] Shi N. et al.: State of charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification. J. Energy Storage 45, 2021, 103518 [https://doi.org/10.1016/j.est.2021.103518].
[29] Subramanyan K. et al.: Fabrication of Na-Ion full-cells using carbon-coated Na3V2(PO4)2O2F cathode with conversion type CuO nanoparticles from spent Li-Ion batteries. Small Methods 2022, 6, 2200257 [https://doi.org/10.1002/smtd.202200257].
[30] Szafraniec A. et al.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad Elektrotechniczny 97, 2021, 8, 36–41 [https://doi.org/10.15199/48.2021.08.07].
[31] Trunova I. et al.: The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, 2019, 163–168 [https://doi.org/10.29202/nvngu/2019-6/24].
[32] Tymchuk S. et al.: Assess electricity quality by means of fuzzy generalized index. Eastern-European Journal of Enterprise Technologies 3(4(75)), 2015, 26–31 [https://doi.org/10.15587/1729-4061.2015.42484].
[33] Tymchuk S. et al.: Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks. Eastern-European Journal of Enterprise Technologies 1(8(73)), 2015, 4–10 [https://doi.org/10.15587/1729-4061.2015.36003].
[34] Battery Data online [https://calce.umd.edu/battery-data#Storage].
[35] First Phosphate. How the LFP Battery Works [https://firstphosphate.com/phosphate-industry/about-the-lfp-battery/#:~:text=How%20the%20LFP%20Battery%20Works,than%20one%20negatively%20charged%20element].
[36] FutureBatteryLab. The big beginner’s guide to Sodium-Ion batteries [https://futurebatterylab.com/the-big-beginners-guide-to-sodium-ion-batteries].
[37] Identifying the pinch points in the LFP supply chain [https://firstphosphate.com/lfp-battery-strategy].
[38] Na-Ion battery online [https://www.hinabattery.com/en/index.php?catid=12].
[39] Samsung INR18650-25R datasheet [https://www.powerstream.com/p/INR18650-25R-datasheet.pdf].
[40] Sodium Ion Batteries: Performance Advantages and Broad Application Prospects in Extreme Temperatures. [https://www.LiFePO4-battery.com/News/sodium-ion-batteries-advantages.html].
[41] Sodium-Ion Battery Market [https://www.marketsandmarkets.com/Market-Reports/sodium-ion-battery-market-207269067.html].