Advancing Bangla typography: machine learning and transfer learning based font detection and classification approach using the ‘Bang-laFont45’ dataset ML and TL based font detection and classification approach using ‘Bang-laFont45’ dataset
Article Sidebar
Open full text
Issue Vol. 35 (2025)
-
Analysis of the impact of selected user interface elements on its usability
Damian Wojtal, Paweł Powroźnik113-120
-
Performance comparison of development frameworks in selected environments in REST API architecture
Mateusz Szewczyk, Maria Skublewska-Paszkowska121-128
-
Comparison of data processing efficiency in Java and Scala
Bartosz Markiewicz, Krzysztof Matyjaszczyk, Marek Miłosz129-136
-
Comparative analysis of Python and Rust: evaluating their combined impact on performance
Przemysław Mroczek, Jakub Mańturz, Marek Miłosz137-141
-
Comparison of the flexibility of standard Salesforce components and custom components in Lightning Web Components
Tomasz Olszewski, Klaudia Parczyńska, Marek Miłosz142-149
-
The impact of using eBPF technology on the performance of networking solutions in a Kubernetes cluster
Konrad Miziński, Sławomir Przyłucki150-158
-
A comparative analysis of web application test automation tools
Michał Moń, Beata Pańczyk159-165
-
Advancing Bangla typography: machine learning and transfer learning based font detection and classification approach using the ‘Bang-laFont45’ dataset
ML and TL based font detection and classification approach using ‘Bang-laFont45’ datasetKazi Samiul Islam, Gourab Roy, Nafiz Nahid, Sunjida Yeasmin Ripti, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer166-174 -
Performance comparison of CRUD operations in Spring Boot and ASP.NET Core frameworks
Michał Grzeszuk, Marek Miłosz175-183
-
The impact of relational and non-relational databases on application performance
Jakub Olszak, Maria Skublewska-Paszkowska184-190
-
An analysis of the quality of interfaces of selected universities in Lublin
Kamil Kurteczka, Marek Miłosz191-196
-
Comparative analysis of the performance of Unity and Unreal Engine
Robert Kilijanek, Marek Miłosz197-201
-
Analysis the efficiency of object detection in images using machine learning libraries in Python
Patryk Kalita, Marek Miłosz202-208
-
Comparative analysis of database access performance of the Hibernate framework and the Jooq library
Karol Hetman, Marek Miłosz209-215
-
Security vulnerabilities in C++ programs
Piotr Michał Adamczyk, Marek Miłosz216-223
-
Impact of web application universal design on accessibility and usability
Daniel Strzelecki, Kamil Adamiec, Maria Skublewska-Paszkowska224-231
Main Article Content
DOI
Authors
Abstract
This paper presents a dataset for detecting and classifying Bangla fonts, consisting of 28,000 images across 45 classes, aimed at supporting font users and typography researchers. Four traditional machine learning models— Support Vector Classifier (SVC), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Random Forest—achieved accuracies of 93.43%, 92.37%, 84.71%, and 81.48%, respectively, with SVC performing best. Six transfer learning models—VGG-16, VGG-19, ResNet-50, MobileNet-v3, Xception, and Inception—were trained, yielding accuracies of 87.74%, 80.00%, 87.26%, 80.55%, 82.30%, and 80.11%, respectively. The results highlight the effectiveness of both traditional and transfer learning models in font detection, with SVC and VGG-16 emerging as top performers.
Keywords:
References
[1]. H. Ren, Y. Liu, G. Naren, J. Lu, The impact of multidi-rectional text typography on text readability in word clouds, Displays 83 (2024) 102724, https://doi.org/10.1016/j.displa.2024.102724. DOI: https://doi.org/10.1016/j.displa.2024.102724
[2]. Y.A. Hermanto, N.B. Ibrahim, J.A. Sudarmanto, F.W. Arizal, N.W. Firmansyah, Atomic design system for ty-pography layout in student poster design, ANDHARUPA: Jurnal Desain Komunikasi Visual & Multimedia 9(3) (2023) 310-325. DOI: https://doi.org/10.33633/andharupa.v9i03.7634
[3]. R.A. Hurley, J. Fischer, A.D. Ouzts, J. Leininger, R. Thomas, A methodology for determining the proper point size for display type on packaging by means of the pack-age's proportions, Packaging Technology and Science 27(12) (2014) 921-31, https://doi.org/10.1002/pts.2067. DOI: https://doi.org/10.1002/pts.2067
[4]. M.E. Dick, M. Woloszyn, Influence of typographic prop-erties on user experience in digital interfaces, Estudos em Design 31(2) (2023) 99-109, https://doi.org/10.35522/eed.v31i2.1711. DOI: https://doi.org/10.35522/eed.v31i2.1711
[5]. T. Zhu, Y. Yang, Research on mobile learning platform interface design based on college students’ visual attention characteristics, Plos One 18(7) (2023) e0283778, https://doi.org/10.1371/journal.pone.0283778. DOI: https://doi.org/10.1371/journal.pone.0283778
[6]. S. Shi, W. You, K. Han, J. Song, L. Sun, VariableTypog-raphy: Artificial Intelligence Augmented Reading Expe-rience, In International Design Engineering Technical Conferences and Computers and Information in Engi-neering Conference, American Society of Mechanical Engineers 87295 (2023) V002T02A088, https://doi.org/10.1115/DETC2023-114811. DOI: https://doi.org/10.1115/DETC2023-114811
[7]. M.S. Islam, Research on Bangla language processing in Bangladesh: progress and challenges, In 8th International Language & Development Conference (2009) 23–25.
[8]. A.K.M.S.A. Rabby, M.M. Islam, Z. Islam, N. Hasan, F. Rahman, Towards building a robust large-scale Bangla text recognition solution using a unique multiple-domain character-based document recognition approach, In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2021) 1393–1399, https://doi.org/10.1109/ICMLA52953.2021.00225 . DOI: https://doi.org/10.1109/ICMLA52953.2021.00225
[9]. A.K.M.S.A. Rabby, M.M. Islam, N. Hasan, J. Nahar, F. Rahman, A novel deep learning character-level solution to detect language and printing style from a bilingual scanned document, In 2020 IEEE International Conference on Big Data (Big Data), IEEE (2020) 5218–5226, https://doi.org/10.1109/BigData50022.2020.9378262. DOI: https://doi.org/10.1109/BigData50022.2020.9378262
[10]. S. Hasan, G. Rabbi, R. Islam, H.I. Bijoy, A. Hakim, Bangla font recognition using transfer learning method, In 2022 International Conference on Inventive Computation Technologies (ICICT), IEEE (2022) 57–62, https://doi.org/10.1109/ICICT54344.2022.9850765. DOI: https://doi.org/10.1109/ICICT54344.2022.9850765
[11]. M.M. Islam, A.K.M.S.A. Rabby, N. Hasan, J. Nahar, F. Rahman, A novel Bangla font recognition approach using deep learning, Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2020, Singapore: Springer Nature Singapore 2 (2021) 745–754, https://doi.org/10.1007/978-981-33-4367-2_71. DOI: https://doi.org/10.1007/978-981-33-4367-2_71
[12]. E. Grabska, I. Grabska-Gradzińska, T. Frodyma, The role of typography in visual design, Craft, Technology and Design (2022) 118-130.
[13]. A.K. Shamsuddin, M.B. Islam, Bengali typesetting for graphics design: Difficulties and way out, International Journal of Trends in Computer Science 2(11) (2013) 386–400.
[14]. A. Qaroush, A. Awad, M. Modallal, M. Ziq, Segmentation-based, omnifont printed Arabic character recognition without font identification, Journal of King Saud University-Computer and Information Sciences 34(6) (2022) 3025–3239, https://doi.org/10.1016/j.jksuci.2020.10.001. DOI: https://doi.org/10.1016/j.jksuci.2020.10.001
[15]. Z. Wang, J. Yang, H. Jin, Z. Wang, E. Shechtman, A. Agarwala, J. Brandt, T.S. Huang, Deep learning for font recognition and retrieval, Applied Cloud Deep Semantic Recognition Auerbach Publications (2018) 109–130. DOI: https://doi.org/10.1201/9781351119023-6
[16]. S. Baluja, Learning typographic style, arXiv preprint, arXiv:1603.04000 (2016), https://doi.org/10.48550/arXiv.1603.04000.
[17]. J. Parente, L. Gonçalo, T. Martins, J.M. Cunha, J. Bicker, P. Machado, Using autoencoders to generate skeleton-based typography, International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar), Cham: Springer Nature Switzerland (2023) 228–243, https://doi.org/10.1007/978-3-031-29956-8_15. DOI: https://doi.org/10.1007/978-3-031-29956-8_15
[18]. G. Biau, E. Scornet, A random forest guided tour, Test 25 (2016) 197–227, https://doi.org/10.1007/s11749-016-0481-7. DOI: https://doi.org/10.1007/s11749-016-0481-7
[19]. S. Salcedo-Sanz, J.L. Rojo-Álvarez, M. Martínez-Ramón, G. Camps-Valls, Support vector machines in engineering: an overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4(3) (2014) 234–267, https://doi.org/10.1002/widm.1125. DOI: https://doi.org/10.1002/widm.1125
[20]. J.C. Stoltzfus, Logistic regression: a brief primer, Aca-demic Emergency Medicine 18(10) (2011) 1099–1104, https://doi.org/10.1111/j.1553-2712.2011.01185.x. DOI: https://doi.org/10.1111/j.1553-2712.2011.01185.x
[21]. Z. Zhang, Introduction to machine learning: k-nearest neighbors, Annals of Translational Medicine 4(11) (2016) 218, https://doi.org/10.21037/atm.2016.03.37. DOI: https://doi.org/10.21037/atm.2016.03.37
[22]. K. Shaheed, A. Mao, I. Qureshi, M. Kumar, S. Hussain, I. Ullah, X. Zhang, DS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition, Expert Systems with Applications 191 (2022) 116288, https://doi.org/10.1016/j.eswa.2021.116288. DOI: https://doi.org/10.1016/j.eswa.2021.116288
[23]. A. Shabbir, et al., Satellite and scene image classification based on transfer learning and fine-tuning of ResNet50, Mathematical Problems in Engineering 2021(1) (2021) 5843816. https://doi.org/10.1155/2021/5843816. DOI: https://doi.org/10.1155/2021/5843816
[24]. X. Xia, C. Xu, B. Nan, Inception-v3 for flower classification, In 2017 2nd International Conference on Image, Vision and Computing (ICIVC), IEEE (2017) 783–787, https://doi.org/10.1109/ICIVC.2017.7984661. DOI: https://doi.org/10.1109/ICIVC.2017.7984661
[25]. S. Wang, J. Ren, X. Guo, A high-accuracy lightweight network model for X-ray image diagnosis: A case study of COVID detection, PLOS One 19(6) (2024) e0303049, https://doi.org/10.1371/journal.pone.0303049. DOI: https://doi.org/10.1371/journal.pone.0303049
[26]. M.F. Jubayer, F.M. Ruhad, M.S. Kayshar, Z. Rizve, M.J.A. Soeb, S. Izlal, M.I. Meftaul, Detection and identi-fication of honey pollens by YOLOv7: A novel frame-work toward honey authenticity, ACS Agricultural Sci-ence & Technology 4(7) (2024) 747–758, https://doi.org/10.1021/acsagscitech.4c00220. DOI: https://doi.org/10.1021/acsagscitech.4c00220
[27]. S. Rabby, F. Hossain, S. Das, I. Rahman, S. Das, J. Soeb, M.F. Jubayer, An automated approach for the kidney segmentation and detection of kidney stones on computed tomography using YOLO algorithms, Journal of Ideas in Health 6(4) (2023) 963–970, https://doi.org/10.47108/jidhealth.Vol6.Iss4.313. DOI: https://doi.org/10.47108/jidhealth.Vol6.Iss4.313
[28]. M.J.A. Soeb, et al., Tea leaf disease detection and identification based on YOLOv7 (YOLO-T), Scientific Reports 13(1) (2023) 6078, https://doi.org/10.1038/s41598-023-33270-4. DOI: https://doi.org/10.1038/s41598-023-33270-4
[29]. S.J. Maisha, A.K. Masum, Supervised machine learning algorithms for sentiment analysis of Bangla newspaper, International Journal of Innovative Computing 11(2) (2021) 15–23, https://doi.org/10.11113/ijic.v11n2.321. DOI: https://doi.org/10.11113/ijic.v11n2.321
[30]. C. Halder, J. Paul, K. Roy, Comparison of the classifiers in Bangla handwritten numeral recognition, In 2012 International Conference on Radar, Communication and Computing (ICRCC), IEEE (2012) 272-276, https://doi.org/10.1109/ICRCC.2012.6450594. DOI: https://doi.org/10.1109/ICRCC.2012.6450594
[31]. N. Borah, U. Baruah, M.T. Ramakrishna, V.V. Kumar, D.R. Dorai, J.R. Annad, Efficient Assamese word recog-nition for societal empowerment: A comparative feature-based analysis, IEEE Access 11 (2023) 82302–82326, https://doi.org/10.1109/ACCESS.2023.3301564. DOI: https://doi.org/10.1109/ACCESS.2023.3301564
[32]. M.Z. Hasan, K.T. Rahman, R.I. Riya, K.Z. Hasan, N. Zahan, A CNN-based classification model for recognizing visual Bengali font, Proceedings of International Joint Conference on Computational Intelligence: IJCCI 2018, Springer Singapore (2020) 471–482. https://doi.org/10.1007/978-981-13-7564-4_40. DOI: https://doi.org/10.1007/978-981-13-7564-4_40
[33]. Z. Ali, S.A. Khan, M.K. Shahzad, H.S.M. Bilal, A Large-Scale Font-Diverse Sindhi Ligature Recognition System, In 2023 International Conference on Frontiers of Infor-mation Technology (FIT) IEEE (2023) 132-137, https://doi.org/10.1109/FIT60620.2023.00033. DOI: https://doi.org/10.1109/FIT60620.2023.00033
[34]. S.Y. Arafat, N. Ashraf, M.J. Iqbal, I. Ahmad, S. Khan, J.J. Rodrigues, Urdu signboard detection and recognition using deep learning, Multimedia Tools and Applications (2022) 11965-11987, https://doi.org/10.1007/s11042-020-10175-2. DOI: https://doi.org/10.1007/s11042-020-10175-2
[35]. N.M. Dipu, S.A. Shohan, K.M. Salam, Bangla optical character recognition (OCR) using deep learning-based image classification algorithms, In 2021 24th International Conference on Computer and Information Technology (ICCIT), IEEE (2021) 1-5, https://doi.org/10.1109/ICCIT54785.2021.9689864. DOI: https://doi.org/10.1109/ICCIT54785.2021.9689864
Article Details
Abstract views: 323

