Analysis the efficiency of object detection in images using machine learning libraries in Python
Article Sidebar
Open full text
Issue Vol. 35 (2025)
-
Analysis of the impact of selected user interface elements on its usability
Damian Wojtal, Paweł Powroźnik113-120
-
Performance comparison of development frameworks in selected environments in REST API architecture
Mateusz Szewczyk, Maria Skublewska-Paszkowska121-128
-
Comparison of data processing efficiency in Java and Scala
Bartosz Markiewicz, Krzysztof Matyjaszczyk, Marek Miłosz129-136
-
Comparative analysis of Python and Rust: evaluating their combined impact on performance
Przemysław Mroczek, Jakub Mańturz, Marek Miłosz137-141
-
Comparison of the flexibility of standard Salesforce components and custom components in Lightning Web Components
Tomasz Olszewski, Klaudia Parczyńska, Marek Miłosz142-149
-
The impact of using eBPF technology on the performance of networking solutions in a Kubernetes cluster
Konrad Miziński, Sławomir Przyłucki150-158
-
A comparative analysis of web application test automation tools
Michał Moń, Beata Pańczyk159-165
-
Advancing Bangla typography: machine learning and transfer learning based font detection and classification approach using the ‘Bang-laFont45’ dataset
ML and TL based font detection and classification approach using ‘Bang-laFont45’ datasetKazi Samiul Islam, Gourab Roy, Nafiz Nahid, Sunjida Yeasmin Ripti, Md. Abu Naser Mojumder, Md. Janibul Alam Soeb, Md. Fahad Jubayer166-174 -
Performance comparison of CRUD operations in Spring Boot and ASP.NET Core frameworks
Michał Grzeszuk, Marek Miłosz175-183
-
The impact of relational and non-relational databases on application performance
Jakub Olszak, Maria Skublewska-Paszkowska184-190
-
An analysis of the quality of interfaces of selected universities in Lublin
Kamil Kurteczka, Marek Miłosz191-196
-
Comparative analysis of the performance of Unity and Unreal Engine
Robert Kilijanek, Marek Miłosz197-201
-
Analysis the efficiency of object detection in images using machine learning libraries in Python
Patryk Kalita, Marek Miłosz202-208
-
Comparative analysis of database access performance of the Hibernate framework and the Jooq library
Karol Hetman, Marek Miłosz209-215
-
Security vulnerabilities in C++ programs
Piotr Michał Adamczyk, Marek Miłosz216-223
-
Impact of web application universal design on accessibility and usability
Daniel Strzelecki, Kamil Adamiec, Maria Skublewska-Paszkowska224-231
Main Article Content
DOI
Authors
Abstract
The purpose of this paper is to analyze and compare the accuracy of object detection in images using Python machine learning libraries such as PyTorch and Tensorflow. The paper describes the use of both libraries to train and test object detection models, considering architectures such as SSD and Faster R-CNN. The experiment was conducted on the Pascal VOC dataset to evaluate the effectiveness and performance of the models. The results include a comparison of metrics such as recall, precision and mAP which allows to choose the best solutions depending on the situation. The article concludes with a summary and final conclusions, allowing practical recommendations to be made for those working on object detection projects.
Keywords:
References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, X. Zheng, TensorFlow: a system for Large-Scale machine learning, In 12th USENIX symposium on operating systems design and implementation (OSDI) (2016) 265-283, https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, S. Chintala, Pytorch: An imperative style high-performance deep learning library, Advances in neural information processing systems arXiv preprint arXiv:1912.01703 (NeurlPS) (2019) 32.
[3] S. Bahrampour, N. Ramakrishnan, L. Schott, M. Shah, Comparative Study of Caffe Neon Theano and Torch for Deep Learning (ICLR) (2016) 114.
[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, SSD: Single Shot MultiBox Detector, In Computer Vision–ECCV 2016: 14th European Conference (2016) 21-37, https://doi.org/10.1007/978-3-319-46448-0_2. DOI: https://doi.org/10.1007/978-3-319-46448-0_2
[5] S. Howal, A. Jadhav, C. Arthshi, S. Nalavade, S. Shinde, Object detection for autonomous vehicle using tensorflow, In International Conference on Intelligent Computing Information and Control Systems (ICICCS) (2019) 86-93, https://doi.org/10.1007/978-3-030-30465-2_11. DOI: https://doi.org/10.1007/978-3-030-30465-2_11
[6] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE transactions on pattern analysis and machine intelligence 39(6) (2016) 1137-1149, https://doi.org/10.1109/TPAMI.2016.2577031. DOI: https://doi.org/10.1109/TPAMI.2016.2577031
[7] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, K. Murphy, Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors, Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (2017) 7310-7311, https://doi.org/10.48550/arXiv.1611.10012. DOI: https://doi.org/10.1109/CVPR.2017.351
[8] S. U. Rehman, M. R. Razzaq, M. H. Hussian, Training of SSD (Single Shot Detector) for Facial Detection using Nvidia Jetson Nano, arXiv preprint arXiv:2105.13906 (2021), https://doi.org/10.48550/arXiv.2105.13906.
[9] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (2016) 770-778. DOI: https://doi.org/10.1109/CVPR.2016.90
[10] S. H. Kang, J. S. Park, Aligned Matching: Improving Small Object Detection in SSD, Sensors 23(5) (2023) 2589, https://doi.org/10.3390/s23052589. DOI: https://doi.org/10.3390/s23052589
Article Details
Abstract views: 155

