Electricity Network Capacity Needs for Industrial Decarbonization in China: Pathways to Net-Zero under Grid Constraints
Article Sidebar
Open full text
Issue Vol. 21 No. 1 (2026)
-
Global Resilience in the Face of Aggression: An Analysis of Sanctions Pressure on Russia's Economy
Olena Honcharenko, Olha Diachenko1-15
-
The Impact of National Interests on Cooperation in Global Environmental Policy
Mohamed Debbah, Sofiane Rimouche16-29
-
Environmental and Social Sustainability Pathways in the Development of Energy Storage Technologies: Global Scenario Analysis
Pawel Rydzewski30-41
-
Electricity Network Capacity Needs for Industrial Decarbonization in China: Pathways to Net-Zero under Grid Constraints
Mohammed Touitou42-60
-
Importance of Sustainable Development Goals 3 and 4 in Relation to overall Sustainable Development
Magdaléna Drastichová, Jiří Fišer61-78
-
From Antagonism to Peace with Nature: Paradigm Shifts in the Human–Nature Relationship
Ryszard F. Sadowski79-88
-
Threshold Role of Democracy in the Nexus of Sustainable Development and Fiscal Stance
Emin Efecan Aktaş89-110
-
Managing Sustainable Digital Marketing: Financial Implications, Security and Ethical Challenges
Ganna Likhonosova, Iryna Shevchenko, Valentyna Hatylo111-128
-
SDG-2: Food and Nutrition Security in BRICS Countries: Do GVC Participation and Carbon Footprints Matter?
SDG2- Food and nutrition Security, Carbon footprints and GVC ParticipationLiu Dan129-159 -
Eco-Taxation and Financial Development: Catalyst for Green Innovation and Environmental Sustainability in the EU
Seyi Saint Akadiri, Sani Abubakar, Fadhila Hamza160-172
-
Energy Transition, Environmental Sustainability and Healthcare Costs in Emerging Sub-Saharan Economies: Evidence from the Pre- and During-COVID-19 Periods – Implications for SDG 3, SDG 7 and SDG 13
Changhong Xu, Changhua Xu173-204
-
Carbon Intensity, Renewable Energy Consumption and SDG8 – Decent Work and Economic Growth in MINT Countries
Weiwei Zhang, Erfu Zhang205-228
-
Environmental Sustainability, Institutions, and Inclusive Growth in MINT Countries: Pathways to Achieving SDG 13- Climate Action
Mengya Wei, Aminat Olayinka Olohunlana, Musa Abdu, Evans Osabuohien229-246
-
Enduring Wisdom: Traditional Sustainable Livelihood Practices of Indian Tribes
Shivendra Shandilya, Dr. Rouchi Chaudhary247-255
-
Research on Sustainable Development Strategies for Folk Culture in Rural China: Based on the Experiencing Perspective
Huangdong Ma, Fenghua Lu, Jiqun Deng256-263
-
Public Governance of Smart Grid Implementation in Urban Energy Infrastructure
Nataliia Protsiuk, Hanna Komarnytska, Maksym Khozhylo, Olesya Lobyk, Tetiana Iankovets264-278
-
Carbon Emission, Human Capital and Adoption of Green Energy Technology in Sub- Saharan Africa
Qingli Li, Lihan Gu279-294
-
Sustainable Development Commitments in the Kenya–EU Economic Partnership Agreement
Mateusz Prorok295-304
-
Realizing Sustainability: An Analysis of Agroforestry Policy Coherence in Indonesia in the Forestry, Agriculture, and Environment Sectors
Eno Suwarno, Indra Gumay Febryano, Fazriyas, Saefudin305-316
-
Can Tourism be Sustainable? An International Perspective
Rupsha Chakraborty, Dipannita Chand317-325
-
Prospects for Development of the Global Automotive Industry in Context of Digitalization and Achievement of the Sustainable Development Goals
Serhii Kozlovskyi, Illya Khadzhynov, Vladyslav Bolhov, Inna Akhnovska, Vladislav Kabachii, Volodymyr Kozlovskyi, Oleksandr Kozlovskyi326-341
Archives
-
Vol. 21 No. 1
2026-01-12 21
-
Vol. 20 No. 2
2025-09-16 20
-
Vol. 20 No. 1
2025-01-10 22
-
Vol. 19 No. 2
2024-07-01 24
-
Vol. 19 No. 1
2024-01-08 27
-
Vol. 18 No. 2
2023-07-10 25
-
Vol. 18 No. 1
2023-01-01 25
-
Vol. 17 No. 2
2022-07-04 26
-
Vol. 17 No. 1
2022-01-03 28
Main Article Content
DOI
Authors
Abstract
China’s commitment to peak carbon emissions by 2030 and achieve carbon neutrality by 2060 requires deep decarbonization of its industrial sector, responsible for over 60% of national energy-related CO₂ emissions. This paper assesses the electricity network capacity needed to support industrial electrification under three scenarios: Business-as-Usual, Balanced Decarbonization and Max Electrification. Using a spatially disaggregated, province-level modeling approach, we project industrial electricity demand through 2050 and compare it to grid headroom to identify infrastructure constraints. Results show that while eastern coastal provinces can accommodate demand growth through 2030, central and western regions face significant capacity shortfalls by 2040–2050. Without targeted investments in transmission and distribution networks, over 55% of large point-source industrial sites could face grid constraints – threatening national decarbonization goals. Policy recommendations include region-specific grid reinforcement, alignment of electrification with infrastructure planning, and integration of network constraints into national energy models. This study provides the first spatially explicit assessment of electricity grid limitations for industrial decarbonization in China, offering key insights for policymakers and planners navigating the net-zero transition. The findings also support progress toward the Sustainable Development Goals – specifically SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure), and SDG 13 (Climate Action) – while aligning with China’s ecological civilization strategy for green and inclusive industrial transformation.
Keywords:
References
1. AGHAHOSSEINI A., BOGDANOV D., BREYER C., 2021, Towards sustainable industrial electrification: A case study in India and Germany, Energy Conversion and Management, 235: 113985.
2. BATAILLE C., 2020, Physical and policy pathways to net-zero emissions industry, Wiley Interdisciplinary Reviews: Climate Change, 11(6): e633. DOI: https://doi.org/10.1002/wcc.633
3. BATAILLE C., ÅHMAN M., NEUHOFF K., NILSSON L.J., FISCHEDICK M., LECHTENBÖHMER S., 2021, A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement, Journal of Cleaner Production, 281: 125303.
4. BROWN T., SCHLACHTBERGER D., KIES A., SCHRAMM S., GREINER M., 2018, Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system, Energy, 160: 720–739. DOI: https://doi.org/10.1016/j.energy.2018.06.222
5. CAO H., ZHANG M., XU Y., 2023, Spatial disparity of energy infrastructure in China, Energy Reports, 9: 101–115.
6. CHEN Y., ZHOU T., LIN X., 2022, Regional planning coordination for China's dual-carbon goals, Environmental Sci-ence & Policy, 138: 111–123.
7. CHINA ELECTRICITY COUNCIL, 2023, National Grid Carbon Budget Integration Report, CEC Press, Beijing.
8. DONG H., WANG R., YUAN J., 2021, Urban industrial planning and power infrastructure mismatch in Chinese cities, Urban Studies, 58(4): 817–837.
9. ENERGY TRANSITIONS COMMISSION, 2021, Making Clean Electrification Possible: 30 Years to Electrify the Global Economy, https://www.energy-transitions.org.
10. FAN J.L., TANG X., XU M., 2022, Pathways to decarbonize China’s steel sector through electrification, Resources, Conservation & Recycling, 182: 106305. DOI: https://doi.org/10.1016/j.resconrec.2022.106305
11. FENG K., HUBACEK K., GUAN D., 2020, Carbon footprints and policy analysis for China’s industry, Nature Commu-nications, 11(1): 2452.
12. GAILANI A., TAYLOR P., 2025, Assessing electricity network capacity for industrial decarbonisation in Great Britain, Energy Policy, 201: 114559. DOI: https://doi.org/10.1016/j.enpol.2025.114559
13. GILS H.C., SCHOLZ Y., PREGGER T., LUCA DE TENA D., 2017, Integrated modeling of variable renewable energy-based power supply in Europe, Energy, 123: 173–188. DOI: https://doi.org/10.1016/j.energy.2017.01.115
14. GRUBB M., DRUMMOND P., HUGHES N., 2022, Delivering industrial decarbonization: Net-zero and the transfor-mation of heavy industry, Nature Climate Change, 12(5): 421–429.
15. HAO X., ZHANG B., XU M., 2022, Cross-sector planning for China’s carbon neutrality: Grid-aware industrial develop-ment, Energy Policy, 165: 112963.
16. HASANBEIGI A., PRICE L., LIN E., 2020, Technologies for low-carbon industry, Renewable Thermal Collaborative Report, https://www.renewablethermal.org.
17. INTERNATIONAL ENERGY AGENCY (IEA), 2022, The Role of Critical Minerals in Clean Energy Transitions, https://www.iea.org.
18. INTERNATIONAL ENERGY AGENCY (IEA), 2023, Global Energy Review 2023, https://www.iea.org/reports/global-energy-review-2023.
19. INTERNATIONAL ENERGY AGENCY (IEA), 2023b, Electrification of Industry: Pathways and Impacts, https://www.iea.org/reports/electrification-in-industry.
20. JIN L., ZHAO X., LI F., 2023, Modeling China’s low-carbon energy system, Applied Energy, 333: 120625.
21. LECHTENBÖHMER S., FISCHEDICK M., SAMADI S., WANG Y., 2018, Energy intensive industries: Transitioning towards a low-carbon future, Energy Research & Social Science, 40: 122–134.
22. LECHTENBÖHMER S., NILSSON L.J., ÅHMAN M., SCHNEIDER C., 2016, Decarbonising the energy intensive basic materials industry through electrification: Implications for future EU electricity demand, Energy, 115: 1623–1631. DOI: https://doi.org/10.1016/j.energy.2016.07.110
23. LI Y., GAO X., 2022, Spatial mismatch between cement production and grid readiness in China, Journal of Cleaner Pro-duction, 351: 131518. DOI: https://doi.org/10.1016/j.jclepro.2022.131518
24. LIN B., XIE C., 2022, Infrastructure readiness and industrial electrification in China, Renewable and Sustainable Energy Reviews, 156: 111945. DOI: https://doi.org/10.1016/j.rser.2021.111945
25. LIU Q., ZHANG S., DENG Y., 2021, National energy policy and transmission constraints in China, Energy Research & Social Science, 81: 102260.
26. LIU Y., WEI Y., ZHANG K., 2022, Industrial emissions and decarbonization in China, Journal of Cleaner Production, 354: 131632.
27. LIU Z., XU Y., ZHANG Y., 2021, Regional analysis of China’s electricity network, Energy Policy, 153: 112254. DOI: https://doi.org/10.1016/j.enpol.2021.112254
28. LUDERER G., MADEDDU S., UECKERDT F., 2021, Electrification of industry and its role in deep decarbonization, Nature Energy, 6: 579–590.
29. MADEDDU S., UECKERDT F., PEHL M., PETERSEIM J., LORD M., KUMAR A., LUDERER G., 2020, The CO₂ reduction potential for the European industry via direct electrification of heat supply, Environmental Research Letters, 15(12): 124004. DOI: https://doi.org/10.1088/1748-9326/abbd02
30. MI Z., WANG S., GUAN D., 2023, China’s industrial emissions and pathways toward carbon neutrality, One Earth, 6(1): 56–70.
31. MINISTRY OF INDUSTRY AND INFORMATION TECHNOLOGY, 2022, Industrial Green Development Plan (2022–2025), http://www.miit.gov.cn.
32. NATIONAL CLIMATE STRATEGY CENTER, 2022, China Carbon Peaking and Neutrality Outlook Report, NCSC Publications, Beijing.
33. NATIONAL DEVELOPMENT AND REFORM COMMISSION, 2021, Outline of the 14th Five-Year Plan, http://www.ndrc.gov.cn.
34. NATIONAL ENERGY ADMINISTRATION, 2023, Electricity System Planning Guidance, http://www.nea.gov.cn.
35. REN21, 2023, Renewables 2023 Global Status Report, https://www.ren21.net/reports/global-status-report/.
36. ROGELJ J., SHINDELL D., JIANG K., FIFITA S., FORSTER P., GINZBURG V., VILARINO M.V., 2021, Mitiga-tion pathways compatible with 1.5°C, IPCC Special Report on Global Warming of 1.5°C.
37. SOVACOOL B.K., GRIFFITHS S., KIM J., BAZILIAN M., 2021, Climate change and industrial decarbonization: To-ward a just transition, Energy Research & Social Science, 70: 101774.
38. STATE GRID CORPORATION OF CHINA, 2023, Grid Capacity Planning Report to 2035, Beijing, SGCC.
39. STATE GRID CORPORATION OF CHINA, 2023, Grid Development Outlook to 2035, http://www.sgcc.com.cn.
40. TANG Y., ZHOU D., LI J., 2021, Smart grid development and sectoral coordination for deep decarbonization, Energy Strategy Reviews, 38: 100734. DOI: https://doi.org/10.1016/j.esr.2021.100734
41. UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP), 2023, Emissions Gap Report 2023, https://www.unep.org.
42. VICTORIA M., ZHU K., BROWN T., ANDRESEN G.B., GREINER M., 2020, Early decarbonization of the European energy system pays off, Nature Communications, 11: 6223. DOI: https://doi.org/10.1038/s41467-020-20015-4
43. WANG F., ZHANG X., LI H., 2023, Grid development gaps for industrial decarbonization in China, Applied Energy, 341: 120800.
44. WANG Q., LIN B., 2020, Transitioning China’s industry: Energy efficiency and CO2, Energy Economics, 87: 104743.
45. WANG X., ZHOU S., ZHAO J., 2021, Mapping regional electricity network readiness for industrial decarbonization in China, Energy Policy, 157: 112545.
46. WORRELL E., HASANBEIGI A., PRICE L., 2022, Decarbonization options for industry: A review of technologies and policy instruments, Journal of Industrial Ecology, 26(3): 682–697.
47. WU J., XU T., 2023, GIS-based optimization for low-carbon industrial zones in China, Sustainable Cities and Society, 96: 104632.
48. XINHUA, 2021, China aims for carbon neutrality by 2060, Xinhua News Agency, http://www.xinhuanet.com.
49. YU H., ZHANG J., 2022, Electricity transmission in China's decarbonization, Renewable Energy, 189: 688–702.
50. ZHANG D., GALLAGHER K., 2016, China's power sector transition, Energy Policy, 99: 173–183.
51. ZHANG D., LI Y., 2023, Electrification pathways for heavy industry in western China, Energy Policy, 174: 113393.
52. ZHANG D., LI Y., 2023, Electrification pathways in Chinese heavy industries, Applied Energy, 331: 120590. DOI: https://doi.org/10.1016/S0306-2619(22)01847-5
53. ZHANG L., HU Y., ZHOU T., 2022, Provincial electricity demand and supply alignment, Journal of Energy Systems, 46(2): 128–145.
54. ZHANG T., ZHOU S., 2021, Electrification of China’s heavy industries: A policy framework, Energy Economics, 101: 105445. DOI: https://doi.org/10.1016/j.eneco.2021.105445
55. ZHANG X., LI H., SUN C., 2021, China's dual carbon goals and energy transition, Energy Policy, 158: 112538.
56. ZHOU K., ZHAO B., LIN Y., 2022, Mapping electricity infrastructure constraints in China's industrial clusters, Re-sources, Conservation and Recycling, 185: 106475. DOI: https://doi.org/10.1016/j.resconrec.2022.106475
57. ZHOU S., WANG Y., LI J., 2021, Electric heat decarbonization pathways in China, Applied Energy, 284: 116319.
Article Details
Abstract views: 1

