COMPUTER AIDED ASSEMBLY PLANNING USING MS EXCEL SOFTWARE – A CASE STUDY
Article Sidebar
Open full text
Issue Vol. 17 No. 2 (2021)
-
INTEGRATION WITH THE SOFTWARE INTERFACE OF THE COM SERVER FOR AUTHORIZED USER
Denis Ratov5-13
-
APPLICATION FOR FUNCTIONALITY AND REGISTRATION IN THE CLOUD OF A MICROCONTROLLER DEVELOPMENT BOARD FOR IOT IN AWS
Elizabeth Perez, Juan A. Araiza, Dreysy Pozos, Edmundo Bonilla, Jose C. Hernandez, Jesus A. Cortes14-27
-
GENETIC ALGORITHM-PID CONTROLLER FOR MODEL ORDER REDUCTION PANTOGRAPHCATENARY SYSTEM
Nasir A. Al-Awad, Izz K. Abboud, Muaayed F. Al-Rawi28-39
-
A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS
KK Praneeth Tellakula, Saravana Kumar R, Sanjoy Deb40-55
-
CANCER GROWTH TREATMENT USING IMMUNE LINEAR QUADRATIC REGULATOR BASED ON CROW SEARCH OPTIMIZATION ALGORITHM
Mohammed A. Hussein, Ekhlas H. Karam, Rokaia S. Habeeb56-69
-
COMPUTER AIDED ASSEMBLY PLANNING USING MS EXCEL SOFTWARE – A CASE STUDY
Jolanta Brzozowska, Arkadiusz Gola70-89
-
RECOGNITION OF FONT AND TAMIL LETTER IN IMAGES USING DEEP LEARNING
Manikandan SRIDHARAN, Delphin Carolina RANI ARULANANDAM, Rajeswari K CHINNASAMY, Suma THIMMANNA, Sivabalaselvamani DHANDAPANI90-99
-
MITIGATING LOAN ASSOCIATED FINANCIAL RISK USING BLOCKCHAIN BASED LENDING SYSTEM
Saha RENO, Sheikh Surfuddin Reza Ali CHOWDHURY, Iqramuzzaman SADI100-126
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
jolantabrzozowska.89@gmail.com
Abstract
The issue of planning assembly operations remains crucial decision-making area for many of manufacturing companies. It becomes particularly significant in case of small and medium enterprises that perform unit or small-scale production, where the option of applying specialized software is often very limited – both due to high purchase price, but also due to its applicability to single unit manufacturing, that is executed based on individual customer orders. The present article describes the possibility of applying the MS Excel spreadsheet in the planning of machine assembly processes. It emphasises, in particular, the method for using the spreadsheet in subsequent stages of the process, and the identification of possible causes that have impact on problems with the planning process. We performed our analysis on the basis of actual data from one of the machine industry enterprises that manufactures in central Poland.
Keywords:
References
Benjaafar, S., & El Hafsi, M. (2006). Production and inventory control of a single product assemble-to-order system with multiple customer classes. Management Science, 52(12), 1896–1912. https://doi.org/10.1287/mnsc.1060.0588 DOI: https://doi.org/10.1287/mnsc.1060.0588
Ciesla, B., & Mleczko, J. (2021). Practical application of fuzzy logic in production control systems of engineer to order SMEs. Applied Computer Science, 17(1), 17-25. https://doi.org/10.23743/acs-2021-02
Danilczuk, W., & Gola, A. (2020). Computer-Aided Material Demand Planning Using ERP Systems and Business Intelligence Technology. Applied Computer Science, 16(3), 42–55. https://doi.org/10.23743/acs-2020-20
ElHafsi, M. (2009). Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes. European Journal of Operational Research, 194(1), 127–142. https://doi.org/10.1016/j.ejor.2007.12.007 DOI: https://doi.org/10.1016/j.ejor.2007.12.007
Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6), 205–212.
Gyulai, D., & Monostori, L. (2017). Capacity management of modular assembly systems. Journal of Manufacturing Systems, 43(1), 88-99. https://doi.org/10.1016/j.jmsy.2017.02.008 DOI: https://doi.org/10.1016/j.jmsy.2017.02.008
Gyulai, D., Kadar, B., & Monostori, L. (2014). Capacity planning and resource allocation in assembly systems consisting of dedicated and Reconfigurable lines. Procedia CIRP, 25, 185–191. https://doi.org/10.1016/j.procir.2014.10.028 DOI: https://doi.org/10.1016/j.procir.2014.10.028
Ju, F., & Li, J. (2014). A Bernoulli model of selective assembly systems. IFAC Proceedings Volumes, 47(3), 1692-1697. https://doi.org/10.3182/20140824-6-ZA-1003.00525 DOI: https://doi.org/10.3182/20140824-6-ZA-1003.00525
Ju, F., Li, J., & Deng, W. (2017). Selective assembly system with unreliable Bernoulli machines and finite buffers. IEEE Transactions on Automation Science and Engineering, 14(1), 171–184. https://doi.org/10.1109/TASE.2016.2604371 DOI: https://doi.org/10.1109/TASE.2016.2604371
Kamath, R., & Sarkar, E. (2020). The Engineer… No Longer a Person, but a Number of an Excel Sheet – Enterprise Resource Planning and Commoditisation of Labour. Global Labour Journal, 11(2), 103–117. https://doi.org/10.15173/glj.v11i2.4101 DOI: https://doi.org/10.15173/glj.v11i2.4101
Li, J., Blumenfeld, D.E, Huang, N., & Alden, J.M. (2009). Throughput analysis of production systems: Recent advances and future topics. International Journal of Production Research, 47(14), 3823–3851. https://doi.org/10.1080/00207540701829752 DOI: https://doi.org/10.1080/00207540701829752
Manitz, M. (2008). Queueing-model based analysis of assembly lines with finite buffers and general service times. Computers & Operations Research, 35(8), 2520-2536. https://doi.org/10.1016/j.cor.2006.12.016 DOI: https://doi.org/10.1016/j.cor.2006.12.016
Pang, Z. (2015). Optimal control of a single-product assemble-to-order system with multiple demand classes and backordering. IEEE Transactions on Automatic Control, 60(2), 480–484. https://doi.org/10.1109/TAC.2014.2328451 DOI: https://doi.org/10.1109/TAC.2014.2328451
Paprocka, I., Krenczyk, D., & Burduk, A. (2021). The Method of Production Scheduling with Uncertaintes Using the Ants Colony Optimisation. Applied Sciences-Basel, 11(1), 171. https://doi.org/10.3390/app11010171 DOI: https://doi.org/10.3390/app11010171
Reiman, M.I., & Wang, Q. (2015). Asymptotically optimal inventory control for assemble-to-order system with identical lead times. Operations Research, 63(3), 489-749. https://doi.org/10.1287/opre.2015.1372 DOI: https://doi.org/10.1287/opre.2015.1372
Sobaszek, Ł., Gola, A., & Kozłowski, E. (2017), Application of survival function in robust scheduling of production jobs. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FEDCSIS) (pp. 575–578). ACSIS. https://doi.org/10.15439/2017F276 DOI: https://doi.org/10.15439/2017F276
Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
Tarigan, Z.J.H., Siagian, H., & Jie, F. (2021). Impact of Enhanced Enterprise Resource Planning (ERP) on Firm Performance through Green Supply Chain Management. Sustainability, 13(8), 4358. https://doi.org/10.3390/su13084358 DOI: https://doi.org/10.3390/su13084358
Wikarek, J., Sitek, P., & Nielsen, P. (2019). Model of decision support for the configuration of manufacturing system. IFAC PapersOnLine, 52(13), 826–831. https://doi.org/10.1016/j.ifacol.2019.11.232 DOI: https://doi.org/10.1016/j.ifacol.2019.11.232
Article Details
Abstract views: 1117
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
