CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Article Sidebar
Open full text
Issue Vol. 16 No. 4 (2020)
-
GRAPH-BASED FOG COMPUTING NETWORK MODEL
Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI5-20
-
JOINT EFFECT OF FORECASTING AND LOT-SIZING METHOD ON COST MINIMIZATION OBJECTIVE OF A MANUFACTURER: A CASE STUDY
Jack OLESEN, Carl-Emil Houmøller PEDERSEN, Markus Germann KNUDSEN, Sandra TOFT, Vladimir NEDBAILO, Johan PRISAK, Izabela Ewa NIELSEN, Subrata SAHA21-36
-
ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS
Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI37-47
-
ARCHITECTURAL PARADIGM OF THE INTERACTIVE INTERFACE MODULE IN THE CLOUD TECHNOLOGY MODEL
Denis RATOV48-55
-
CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Amina ALYAMANI, Oleh YASNIY56-63
-
DEVELOPMENT OF AN ONTOLOGY-BASED ADAPTIVE PERSONALIZED E-LEARNING SYSTEM
Olutayo BOYINBODE, Paul OLOTU, Kolawole AKINTOLA64-84
-
COMPUTER VISION BASED ON RASPBERRY PI SYSTEM
Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI85-102
-
ORDER VIOLATION IN MULTITHREADED APPLICATIONS AND ITS DETECTION IN STATIC CODE ANALYSIS PROCESS
Damian GIEBAS, Rafał WOJSZCZYK103-117
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data.
Keywords:
References
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185. DOI: https://doi.org/10.1080/00031305.1992.10475879
Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M., & Malik, A. S. (2017). Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience, 11(103), 1–12. DOI: https://doi.org/10.3389/fncom.2017.00103
Bryant, R. A., & Sindicich, N. (2007). Hypnosis and Thought Suppression – More Data: A Brief Communication. International Journal of Clinical and Experimental Hypnosis, 56(1), 37–46. DOI: https://doi.org/10.1080/00207140701672995
Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. DOI: https://doi.org/10.1007/BF00994018
Dvey-Aharon, Z., Fogelson, N., Peled, A, & Intrator, N. (2015). Schizophrenia Detection and Classification by Advanced Analysis of EEG Recordings Using a Single Electrode Approach. PLoS ONE, 10(4), 1–12. DOI: https://doi.org/10.1371/journal.pone.0123033
Haykin, S. (Ed.). (2009). Neural Networks and Learning Machines (3rd Edition). New Jersey, Prentice Hall.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. DOI: https://doi.org/10.1126/science.1127647
Lawhern, V., Hairston, W. D., McDowell, K., Westerfield, M., & Robbins, K. (2012). Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods, 208(2), 181–189. DOI: https://doi.org/10.1016/j.jneumeth.2012.05.017
Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165, 23–31. DOI: https://doi.org/10.1016/j.neucom.2014.08.092
MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – Volume 1: Statistics, 281–297.
Parvinnia, E., Sabeti, M., Zolghadri Jahromi, M., & Boostani, R. (2014). Classification of EEG Signals using Adaptive Weighted Distance Nearest Neighbor Algorithm. Journal of King Saud University – Computer and Information Sciences, 26(1), 1–6. DOI: https://doi.org/10.1016/j.jksuci.2013.01.001
Podgorelec, V. (2012). Analyzing EEG signals with machine learning for diagnosing Alzheimer’s disease. Elektronika i Elektrotechnika, 18(8), 61–64. DOI: https://doi.org/10.5755/j01.eee.18.8.2627
Provençal, S. C., Bond, S., Rizkallah, E., & El-Baalbaki, G. (2018). Hypnosis for burn wound care pain and anxiety: A systematic review and meta-analysis. Burns, 44(8), 1870–1881. DOI: https://doi.org/10.1016/j.burns.2018.04.017
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106. DOI: https://doi.org/10.1007/BF00116251
Real, R. G. L., & Kübler, A. (2014). Auditory oddball paradigm during hypnosis. Institute of Psychology, University of Würzburg.
Sanei, S., & Chambers, J. A. (Eds.). (2007). EEG Signal processing. Great Britain, Chippenham, John Wiley & Sons. DOI: https://doi.org/10.1002/9780470511923
Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017). Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect epileptic seizure. Informatica, 41(1), 99–110.
Sun, L., Jin, B., Yang, B., Tong, J., Liu, C., & Xiong, H. (2019). Unsupervised EEG Feature Extraction Based on Echo State Network. Information Sciences, 475, 1–17. DOI: https://doi.org/10.1016/j.ins.2018.09.057
Terhune, D. B., Cleeremans, A., Raz, A., & Lynn, S. J. (2017). Hypnosis and top-down regulation of consciousness. Neuroscience and Biobehavioral Reviews, 81(A), 59–74. DOI: https://doi.org/10.1016/j.neubiorev.2017.02.002
Thilakvathi, B., Shenbaga, Devi, S., Bhanu, K., & Malaippan, M. (2017). EEG signal complexity analysis for schizophrenia during rest and mental activity. Biomedical Research, 28(1): 1–9.
Wood, C., & Bioy, A. (2008). Hypnosis and Pain in Children. Journal of Pain and Symptom Management, 35(4), 437–446. DOI: https://doi.org/10.1016/j.jpainsymman.2007.05.009
Article Details
Abstract views: 584
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
