INEFFICIENCY OF DATA MINING ALGORITHMS AND ITS ARCHITECTURE: WITH EMPHASIS TO THE SHORTCOMING OF DATA MINING ALGORITHMS ON THE OUTPUT OF THE RESEARCHES
Workineh TESEMA
workineh.tesema@ju.edu.etJimma University, Faculty of Computing, Department of Information Technology, Jimma (Ethiopia)
Abstract
This review paper presents a shortcoming associated to data mining algorithm(s) classification, clustering, association and regression which are highly used as a tool in different research communities. Data mining researches has successfully handling large amounts of dataset to solve the problems. An increase in data sizes was brought a bottleneck on algorithms to retrieve hidden knowledge from a large volume of datasets. On the other hand, data mining algorithm(s) has been unable to analysis the same rate of growth. Data mining algorithm(s) must be efficient and visual architecture in order to effectively extract information from huge amounts of data in many data repositories or in dynamic data streams. The increasing use of information visualization tools (architecture) and data mining algorithm(s) stems from two separate lines of research. Data visualization researchers believe in the importance of giving users an overview and insight into the data distributions. Many powerful visual graphical interfaces are built on top of statistical analysis and data mining algorithms to permit users to leverage their power without a deep understanding of the underlying technology. The combination of the graphical interface is permit to navigate through the complexity of statistical and data mining techniques to create powerful models. Therefore, there is an increasing need to understand the bottlenecks associated with the data mining algorithms in modern architectures and research community. This review paper basically to guide and help the researchers specifically to identify the shortcoming of data mining techniques with domain area in solving a certain problems they will explore. It also shows the research areas particularly a multimedia (where data can be sequential, audio signal, video signal, spatio-temporal, temporal, time series etc) in which data mining algorithms not yet used.
Keywords:
Data Mining, classification, clustering, association, regression, algorithms bottleneckReferences
Agrawal, R., & Srikant, R. (2015). Fast algorithms for mining association rules. In Proc. of the 20th International Conference on Very Large Data Bases (VLDB) (pp. 487–499). Santiago, Chile.
Google Scholar
Al-Khoder, A., & Harmouch, H. (2015). Evaluating Four Of The most Popular Open Source and Free Data Mining Tools. International Journal of Academic Scientific Research, 3(10), 13–23.
Google Scholar
Bavisi, S., Mehta, J., & Lopes, L. (2014). A Comparative Study of Different Data Mining Algorithms. International Journal of Current Engineering and Technology, 4(5), 3248–3252.
Google Scholar
Gulli, A., & Pal, S. (2017). Deep Learning with Keras-Implement neural networks with Keras on Theano and Tensor Flow. Birmingham, UK: Packt Publishing.
Google Scholar
Huang, H. C., & Hou, C. I. (2017). Tourism Demand Forecasting Model Using Neural Network. International Journal of Computer Science & Information Technology (IJCSIT), 9(2), 19–29.
DOI: https://doi.org/10.5121/ijcsit.2017.9202
Google Scholar
Joseph, S. R., Hlomani, H., & Letsholo, K. (2016). Data Mining Algorithms: An Overview. International journal of Computers and Technology, 15(6), 6806–6813.
DOI: https://doi.org/10.24297/ijct.v15i6.1615
Google Scholar
Kalyani, J., Bharathi, H. N., & Rao, J. (2016) Stock Trend Prediction Using News Sentiment Analysis, International Journal of Computer Science & Information Technology (IJCSIT), 8(3), 67–76.
DOI: https://doi.org/10.5121/ijcsit.2016.8306
Google Scholar
Kotu, V., & Deshpande, B. (2015). Predictive Analytics and Data Mining – Concepts and Practice with RapidMiner. Elsevier.
DOI: https://doi.org/10.1016/B978-0-12-801460-8.00013-6
Google Scholar
Kumbhare, T. A., & Chobe, S. V. (2014) An Overview of Association Rule Mining Algorithms. International Journal of Computer Science and Information Technologies, 5(1), 927–930.
Google Scholar
Massaro, A., Barbuzzi, D., Vitti, V., Galiano, A., Aruci, M., & Pirlo, G. (2016), Predictive Sales Analysis According to the Effect of Weather. In Proceeding of the 2nd International Conference on Recent Trends and Applications in Computer Science and Information Technology (pp. 53–55). Tirana, Albania.
Google Scholar
Massaro, A., Galiano, A., Barbuzzi, D., Pellicani, L., Birardi, G., Romagno, D. D., & Frulli, L., (2017). Joint Activities of Market Basket Analysis and Product Facing for Business Intelligence oriented on Global Distribution Market: examples of data mining applications. International Journal of Computer Science and Information Technologies, 8(2), 178–183.
Google Scholar
Massaro, A., Maritati, V., & Galiano, A. (2018). Data Mining Model Performance of Sales Predictive Algorithms Based On Rapidminer Workflows. International Journal of Computer Science & Information Technology (IJCSIT), 10 (3) 39–56. https://doi.org/10.5121/ijcsit.2018.10303
DOI: https://doi.org/10.5121/ijcsit.2018.10303
Google Scholar
Negandhi, G. (2007). Apriori Algorithm Review for Finals (SE 157B). Spring Semester. Nguyen, H.-L., Woon, Y. K., & Ng, W. K. (2015). A Survey on Data Stream Clustering and Classification. Knowledge and Information Systems, 45(3), 535–569. https://doi.org/10.1007/s10115-014-0808-1
DOI: https://doi.org/10.1007/s10115-014-0808-1
Google Scholar
Otha, M., & Higuci, Y. (2013). Study on Design of Supermarket Store Layouts: the Principle of Sales Magnet, World Academy of Science. Engineering and Technology, 7(1), 209–212.
Google Scholar
Ozisikyilmaz, B. (2009). Analysis, Characterization and Design of Data Mining Applications and Applications to Computer Architecture (Unpublished doctoral dissertation). Northwestern University, Evanston, Illinois.
Google Scholar
Rehman, N. (2017). Data Mining Techniques Methods Algorithms and Tools. International of Computer Science and Mobile Computing, 6(7), 227–231.
Google Scholar
Shneiderman, B. (2003). Inventing discovery tools: Combining information visualization with data mining. In The Craft of Information Visualization Readings and Reflections Interactive Technologies (pp.378-385). Morgan Kaufmann. https://doi.org/10.1016/B978-155860915-0/50048-2
DOI: https://doi.org/10.1016/B978-155860915-0/50048-2
Google Scholar
Štulec, I., Petljak, K., & Kukor, A. (2016). The Role of Store Layout and Visual Merchandising in Food Retailing. European Journal of Economics and Business Studies, 4(1), 139–152.
DOI: https://doi.org/10.26417/ejes.v4i1.p138-151
Google Scholar
Swarndeep Saket, J., & Pandya, S. (2016). An Overview of Partitioning Algorithms in Clustering Techniques. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 5(6), 1943–1946.
Google Scholar
Talia, D., Trunfio, P., & Marozzo, F. (2016). Data Analysis in the Cloud: Models and Techniques for Cloud-Based Data Analysis. Elsevier Science.
DOI: https://doi.org/10.1016/B978-0-12-802881-0.00003-2
Google Scholar
Wimmer, H., & Powell, L. M. (2015) A Comparison of Open Source Tools for Data Science, In Proceedings of the Conference on Information Systems Applied Research (v8 n3651). Wilmington, North Carolina USA.
Google Scholar
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 algorithms in data mining. London, UK: Springer-Verlag London Limited.
DOI: https://doi.org/10.1007/s10115-007-0114-2
Google Scholar
Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. doi:10.1007/s40745-015-0040-1
DOI: https://doi.org/10.1007/s40745-015-0040-1
Google Scholar
Yadav, Ch., Wang, S., & Kumar, M. (2013) Algorithm and approaches to handle large Data-A Survey, International Journal of Computer Science and Network, 2(3), 1307.5437.
Google Scholar
Zafarani, R., Abbasi, M., & Liu, H. (2014). Social Media Mining. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139088510
DOI: https://doi.org/10.1017/CBO9781139088510
Google Scholar
Authors
Workineh TESEMAworkineh.tesema@ju.edu.et
Jimma University, Faculty of Computing, Department of Information Technology, Jimma Ethiopia
Statistics
Abstract views: 364PDF downloads: 32
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Md. Torikur RAHMAN, A NOVEL APPROACH TO ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK (MANET) THROUGH A NEW BANDWIDTH OPTIMIZATION TECHNIQUE , Applied Computer Science: Vol. 15 No. 2 (2019)
- Isaac FLORES-HERNÁNDEZ, Edmundo BONILLA-HUERTA, Perfecto MALAQUIAS QUINTERO-FLORES, Oscar Atriano PONCE, José Crispín HERNÁNDEZ-HERNÁNDEZ, APPLYING INTELLIGENT TECHNIQUES FOR TALENT RECRUITMENT , Applied Computer Science: Vol. 15 No. 2 (2019)
- Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG , KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL , Applied Computer Science: Vol. 20 No. 1 (2024)
- Marcin TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI, APPLICATION OF IMAGE ANALYSIS TO THE IDENTIFICATION OF MASS INERTIA MOMENTUM IN ELECTROMECHANICAL SYSTEM WITH CHANGEABLE BACKLASH ZONE , Applied Computer Science: Vol. 15 No. 3 (2019)
- Ghania ZIDANI, Djalal DJARAH, Abdslam BENMAKHLOUF, Laid KHETTACHE, OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT , Applied Computer Science: Vol. 20 No. 1 (2024)
- Rafał KWOKA, Janusz KOZAK, Michał MAJKA, TESTS OF HTS 2G SUPERCONDUCTING TAPES USING THE LABVIEW ENVIRONMENT , Applied Computer Science: Vol. 14 No. 1 (2018)
- Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec, ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS , Applied Computer Science: Vol. 20 No. 1 (2024)
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
You may also start an advanced similarity search for this article.