OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT
Article Sidebar
Open full text
Issue Vol. 20 No. 1 (2024)
-
A NEW APPROACH FOR BREAST CANCER DETECTION- BASED MACHINE LEARNING TECHNIQUE
Malek M. AL-NAWASHI , Obaida M. AL-HAZAIMEH, Mutaz Kh. KHAZAALEH1–16
-
A STUDY ON AN AR-BASED CIRCUIT PRACTICE
Hae Chan Na, Yoon Sang Kim17-27
-
ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING
Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM28–55
-
THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES
Katarzyna KUREK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK56-71
-
OPTIMIZING PEDESTRIAN TRACKING FOR ROBUST PERCEPTION WITH YOLOv8 AND DEEPSORT
Ghania ZIDANI, Djalal DJARAH, Abdslam BENMAKHLOUF, Laid KHETTACHE72-84
-
OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS.
Rumesh Edirimanne, W Madushan Fernando, Peter Nielsen, H. Niles Perera, Amila Thibbotuwawa85–105
-
EMOTION RECOGNITION FROM HEART RATE VARIABILITY WITH A HYBRID SYSTEM COMBINED HIDDEN MARKOV MODEL AND POINCARE PLOT
Sahar ZAMANI KHANGHAH, Keivan MAGHOOLI106-121
-
APPLICATION OF THERMAL IMAGING CAMERAS FOR SMARTPHONE: SEEK THERMAL COMPACT PRO AND FLIR ONE PRO FOR HUMAN STRESS DETECTION – COMPARISON AND STUDY
Katarzyna BARAN122-138
-
FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS
Alexandru Marius OBRETIN, Andreea Alina CORNEA139-156
-
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES
Jarelh Galdos, Nikolai Lopez, Angie Medina, Jorge Huarca, Jorge Rendulich, Erasmo Sulla157-172
-
KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL
Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG173-188
-
ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec189-207
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
benmakhlouf.abdeslam@univ-ouargla.dz
Abstract
Multi-object tracking is a crucial aspect of perception in the area of computer vision, widely used in autonomous driving, behavior recognition, and other areas. The complex and dynamic nature of environments, the ever-changing visual features of people, and the frequent appearance of occlusion interactions all impose limitations on the efficacy of existing pedestrian tracking algorithms. This results in suboptimal tracking precision and stability. As a solution, this article proposes an integrated detector-tracker framework for pedestrian tracking. The framework includes a pedestrian object detector that utilizes the YOLOv8 network, which is regarded as the latest state-of-the-art detector, that has been established. This detector provides an ideal detection base to address limitations. Through the combination of YOLOv8 and the DeepSort tracking algorithm, we have improved the ability to track pedestrians in dynamic scenarios. After conducting experiments on publicly available datasets such as MOT17 and MOT20, a clear improvement in accuracy and consistency was demonstrated, with MOTA scores of 63.82 and 58.95, and HOTA scores of 43.15 and 41.36, respectively. Our research highlights the significance of optimizing object detection to unleash the potential of tracking for critical applications like autonomous driving.
Keywords:
References
Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., & Yan, J. (2016). POI: Multiple object tracking with high performance detection and appearance feature arXiv (Cornell University). https://doi.org/10.48550/arxiv.1610.06136
Xu, Y., Ošep, A., Ban, Y., Horaud, R., Leal-Taixé, L., & Alameda-Pineda, X. (2019). How to train your deep multi-object tracker. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1906.06618
Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., & Herrera, F. (2020). Deep learning in video multi-object tracking: A survey. Neurocomputing, 381, 61–88. https://doi.org/10.1016/j.neucom.2019.11.023
Kamal, R., Chemmanam, A.J., Jose, B., Mathews, S., & Varghese, E. (2020, October 20-22). Construction safety surveillance using machine learning. International Symposium on Networks, Computers and Communications, Montreal, QC, Canada.
Ess, A., Schindler, K., Leibe, B., & Van Gool, L. (2010). Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 29(14), 1707–1725. https://doi.org/10.1177/0278364910365417
Behrendt, K., Novak, L., & Botros, R. (2017, May 29-June 3). A deep learning approach to traffic lights: Detection, tracking, and classification. IEEE International Conference on Robotics and Automation, Singapore (ICRA), Singapore.
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In Proceedings of the IEEE International Conference on Image Processing (ICIP) (pp. 3464-3468). IEEE. https://doi.org/10.1109/ICIP.2016.7533003
Bochinski, E., Eiselein, V., & Sikora, T. (2017). Highspeed tracking-by-detection without using image information. In AVSS (pp. 1-6). IEEE.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., & Wang, X. (2022). Bytetrack: Multi-object tracking by associating every detection box. In ECCV (pp. 1-21). Springer.
Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., & Wei, Y. (2022). Motr: End-to-end multiple object tracking with transformer. In ECCV (pp. 659-675). Springer.
Okuma, K., et al. (2004). A boosted particle filter: Multitarget detection and tracking. European Conference on Computer Vision. Springer.
Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8), 790-799.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv. http://xxx.lanl.gov/abs/1506.02640
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. arXiv. http://xxx.lanl.gov/abs/1506.02640
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C. (2016). SSD: Single shot multibox detector. In Computer Vision – ECCV 2016 (pp. 21–37). Springer.
Abbas, S. M., & Singh, S. (2018). Region-based object detection and classification using faster R-CNN. IEEE. https://doi.org/10.1109/ciact.2018.8480413
Mao, Q.C., Sun, H.M., Liu, Y.B., & Jia, R.S. (2019). Mini-YOLOv3: Real-time object detector for embedded applications. IEEE Access, 7, 133529–133538.
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., & Kim, T.K. (2021). Multiple object tracking: A literature review. Artificial Intelligence, 293, 103448.
Bergmann, P., Meinhardt, T., & Leal-Taixe, L. (2019). Tracking without bells and whistles. In ICCV (pp. 941-951).
Pang, B., Li, Y., Zhang, Y., Li, M., & Lu, C. (2020). Tubetk: Adopting tubes to track multi-object in a one-step training model. In CVPR (pp. 6308-6318).
Peng, J., Wang, C., Wan, F., Wu, Y., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., & Fu, Y. (2020). Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In ECCV (pp. 145-161). Springer.
Wang, Z., Zheng, L., Liu, Y., Li, Y., & Wang, S. (2020). Towards real-time multi-object tracking. In ECCV (pp. 107-122). Springer.
Munjal, B., Aftab, A. R., Amin, S., Brandlmaier, M. D., Tombari, F., & Galasso, F. (2020). Joint detection and tracking in videos with identification features. Image and Vision Computing, 100, 103932. https://doi.org/10.1016/j.imavis.2020.103932
Feng, W., Bai, L., Yao, Y., Gan, W., Wu, W., & Ouyang, W. (2023). Similarity- and quality-guided relation learning for joint detection and tracking. IEEE Transactions on Multimedia, 1-13. https://doi.org/10.1109/tmm.2023.3279670
Wang, Y., Kitani, K., & Weng, X. (2021). Joint object detection and multi-object tracking with graph neural networks. 2021 IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/icra48506.2021.9561110
De Magalhães Rosa, G. J., & Papa, J. P. (2022). Learning to weight similarity measures with siamese networks: A case study on optimum-path forest. In Elsevier eBooks (pp. 155-173). Elsevier. https://doi.org/10.1016/b978-0-12-822688-9.00015-3
Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1-2), 83-97. https://doi.org/10.1002/nav.3800020109
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., & Wang, X. (2022). Bytetrack: Multi-object tracking by associating every detection box. European Conference on Computer Vision, Glasgow, United Kingdom.
Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics. GitHub. https://github.com/ultralytics/ultralytics
Chen, L., Ai, H., Zhuang, Z., & Shang, C. (2018). Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). IEEE. https://doi.org/10.1109/ICME.2018.8482164
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In Proceedings of the IEEE International Conference on Image Processing (ICIP) (pp. 3464-3468). IEEE. https://doi.org/10.1109/ICIP.2016.7533003
Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. 2017 IEEE International Conference on Image Processing (ICIP). https://doi.org/10.1109/ICIP.2017.8296526
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35-45. https://doi.org/10.1115/1.3662552
Sun, Z., Chen, J., Chao, L., Ruan, W., & Mukherjee, M. (2021). A survey of multiple pedestrian tracking based on tracking-by-detection framework. IEEE Transactions on Circuits and Systems for Video Technology, 31(7), 1819-1833. https://doi.org/10.1109/TCSVT.2020.2973098
Treven, J. R., & Cordova-Esparaza, D. M. (2023). A comprehensive review of yolo: From yolov1 to yolov8 and beyond. arXiv. http://arxiv.org/abs/2304.00501
Solawetz, J., & Francesco. (2023). What is yolov8? The ultimate guide. Roboflow Blog. https://blog.roboflow.com/whats-new-in-yolov8/
Korepanova, A.A., Oliseenko, V.D., & Abramov, M.V. (2020, May). Applicability of similarity coefficients in social circle matching. 2020 XXIII International Conference on Soft Computing and Measurements (SCM), St. Petersburg, Russia.
Vijaymeena, M., & Kavitha, K. (2016). A survey on similarity measures in text mining. Machine Learning Applications: An International Journal, 3(1), 19-28.
Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., & Zhang, J. (2009). Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 319-336. https://doi.org/10.1109/TPAMI.2008.111
Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. European Conference on Computer Vision (ECCV) Workshop on Benchmarking Multi-Target Tracking, Amsterdam, The Netherlands.
Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L., & Leibe, B. (2020). HOTA: A higher order metric for evaluating multi-object tracking. International Journal of Computer Vision, 129(2), 548-578. https://doi.org/10.1007/s11263-020-01416-9
Article Details
Abstract views: 996
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
