PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE
Article Sidebar
Open full text
Issue Vol. 18 No. 3 (2022)
-
TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS
Grzegorz BOCEWICZ, Robert WÓJCIK, Paweł SITEK, Zbigniew BANASZAK5-18
-
R PEAK DETERMINATION USING A WDFR ALGORITHM AND ADAPTIVE THRESHOLD
Thanh-Nghia NGUYEN, Thanh-Hai NGUYEN, Ba-Viet NGO19-30
-
SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW
Konrad PIETRYKOWSKI, Paweł KARPIŃSKI31-41
-
PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE
Andrij MILENIN42-53
-
APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT
Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH54-62
-
ANALYSIS OF THE USABILITY AND ACCESSIBILITY OF WEBSITES IN VIEW OF THEIR UNIVERSAL DESIGN PRINCIPLES
Błażej BADZIO, Agnieszka BODZIAK, Bartłomiej BRODAWKA, Karol BUCHAJCZUK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK63-85
-
COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION
Grzegorz SUCHANEK, Roman FILIPEK86-104
-
A SIX-PORT MEASUREMENT DEVICE FOR HIGH POWER MICROWAVE VECTOR NETWORK ANALYSIS
Benjamin KOMMEY, Ernest Ofosu ADDO, Elvis TAMAKLOE, Eric Tutu TCHAO, Henry NUNOO-MENSAH105-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper discusses the solving of inverse thermomechanical problems requiring a large number of FEM tasks with various boundary conditions. The study examined the case when all tasks have the same number of nodes, finite elements, and nodal connections. In this study, the speedup of the solution of the inverse problem is achieved in two ways: 1. The solution of all FEM tasks in parallel mode. 2. The use by all FEM tasks a common matrix with addresses of nonzero elements in the stiffness matrices. These algorithms are implemented in the own FEM code, designed to solve inverse problems of the hot metal forming. The calculations showed that developed code in parallel mode is effective for the number of tasks late than 0,7-0,9 of the number of available processors. Thus, at some point, it becomes effective to use a sequential solution to all tasks and to use a common matrix of addresses of nonzero elements in the stiffness matrix. The achieved acceleration at the optimal choice of the algorithm is 2–10 times compared with the classical multivariate calculations in the FEM. The paper provides an example of the practical application of the developed code for calculating the allowable processing maps for laser dieless drawing of ultra-thin wire from copper alloy by solving the thermomechanical inverse problem. The achieved acceleration made it possible to use the developed parallel code in the control software of the laboratory setup for laser dieless drawing.
Keywords:
References
Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., & McDonald, J. (2001). Parallel Programming in OpenMP. Elsevier Science.
Chenot, J., Massoni, E., & Fourment, J. L. (1996). Inverse problems in finite element simulation of metal forming processes. Engineering Computations, 13(2/3/4), 190–225. https://doi.org/10.1108/02644409610114530 DOI: https://doi.org/10.1108/02644409610114530
Furushima, T., & Manabe, K. (2007). Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes. Journal of Materials Processing Technology, 191(1), 59–63. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2007.03.084 DOI: https://doi.org/10.1016/j.jmatprotec.2007.03.084
Hensel, A. & Spittel, T. (1978). Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. VEB Deutscher Verlag fur Grundstoffindustrie.
Jaluria, Y. (2021). Strategies for solving inverse problems in thermal processes and systems. International Journal of Numerical Methods for Heat & Fluid Flow, 31(10), 3073–3088. https://doi.org/10.1108/HFF12-2019-0926 DOI: https://doi.org/10.1108/HFF-12-2019-0926
Kraft, F. B. (1980). Three fine wire drawing systems – in economic comparison. Wire Journal International, 19, 103–105.
Kubo, S. (1988). Inverse Problems Related to the Mechanics and Fracture of Solids and Structures. JSME International Journal. Ser. 1, Solid Mechanics, Strength of Materials, 31(2), 157–166. https://doi.org/10.1299/jsmea1988.31.2_157 DOI: https://doi.org/10.1299/jsmea1988.31.2_157
Lesnic, D. (2021). Inverse Problems with Applications in Science and Engineering. Chapman and Hall/CRC. DOI: https://doi.org/10.1201/9780429400629
Li, Y., Quick, N. R., & Kar, A. (2002). Dieless laser drawing of fine metal wires. Journal of Materials Processing Tech., 123(3), 451–458. DOI: https://doi.org/10.1016/S0924-0136(02)00110-3
Milenin, A. (2017). Parallel FEM code for simulation of laser dieless drawing process of tubes. Computer Methods in Materials Science, 17(4), 178–185.
Milenin, A., Kustra, P., Furushima, T., Du, P., & Němeček, J. (2018). Design of the laser dieless drawing process of tubes from magnesium alloy using FEM model. Journal of Materials Processing Technology, 262, 65–74. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2018.06.018 DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.018
Milenin, A., Wróbel, M., & Kustra, P. (2021). Investigation of the workability and surface roughness of thin brass wires in various dieless drawing technologies. Archives of Civil and Mechanical Engineering, 22(1), 10. https://doi.org/10.1007/s43452-021-00331-2 DOI: https://doi.org/10.1007/s43452-021-00331-2
Pokorska, I. (2007). Direct and inverse problems in metal forming of rigid-poroplastic materials. Journal of Materials Processing Technology, 184(1), 146–156. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2006.11.015 DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.015
Schenk, O., & Gärtner, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3), 475–487. https://doi.org/https://doi.org/10.1016/j.future.2003.07.011 DOI: https://doi.org/10.1016/j.future.2003.07.011
Szeliga, D., Gawąd, J., & Pietrzyk, M. (2004). Parameters Identification of Material Models Based on the Inverse Analysis. International Journal of Applied Mathematics and Computer Science, 14, 549–556.
Szeliga, D., & Pietrzyk, M. (2007). Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation. Archives of Civil and Mechanical Engineering, 7(1), 35–52. https://doi.org/https://doi.org/10.1016/S1644-9665(12)60003-X DOI: https://doi.org/10.1016/S1644-9665(12)60003-X
Thomas, A. E., Abbes, B., Li, Y. M., Abbes, F., Guo, Y.-Q., & Duval, J.-L. (2017). A coupled thermo-mechanical pseudo inverse approach for preform design in forging. AIP Conference Proceedings, 1896, 170004. https://doi.org/10.1063/1.5008202 DOI: https://doi.org/10.1063/1.5008202
Tiernan, P., & Hillery, M. T. (2004). Dieless wire drawing—an experimental and numerical analysis. Journal of Materials Processing Tech., 155–156(Complete), 1178–1183. https://doi.org/10.1016/j.jmatprotec.2004.04.175 DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.175
Tiernan, P., & Hillery, M. T. (2008). Technical paper. Journal of Manufacturing Processes, 10(1), 12–20. https://doi.org/10.1016/j.manpro.2008.05.001 DOI: https://doi.org/10.1016/j.manpro.2008.05.001
Article Details
Abstract views: 212
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
