2D IMAGE-BASED INDUSTRIAL ROBOT END EFFECTOR TRAJECTORY CONTROL ALGORITHM

Anna CZARNECKA

l.sobaszek@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin (Portugal)

Łukasz SOBASZEK


Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin (Poland)

Antoni ŚWIĆ


Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin (Poland)

Abstract

This paper presents an algorithm for programming an industrial robot’s end effector path based on 2D images. The first section gives a brief overview of modern solutions for industrial robot implementation. The next section describes the test set-up and the software used in tests. The work also presents the key elements of the controller algorithm and their operation: 2D image processing with MATLAB software, generating the code for robot control in AS language, and implementation of the produced codes to the Kawasaki RS003N robot.


Keywords:

industrial robots, robots programming, AS language, MATLAB

Grobelny, M., Jarosiński, S., Piłat, M., Pieniak, D., & Sobaszek, Ł. (2016). Projekt aplikacji komputerowej umożliwiającej sterowanie robotem przemysłowym kawasaki RS003N. Zeszyty Naukowe Wydziału Elektroniki i Informatyki, 10, 163–176.
  Google Scholar

Haage, M., Piperagkas, G., Papadopoulos C., Mariolis I., Malec J., Bekiroglu Y., Hedelind M., & Tzovaras D. (2017). Teaching Assembly by Demonstration Using Advanced Human Robot Interaction and a Knowledge Integration Framework. Procedia Manufacturing, 11, 164–173. https://doi.org/10.1016/j.promfg.2017.07.221
DOI: https://doi.org/10.1016/j.promfg.2017.07.221   Google Scholar

Hajduk M., & Koukolová L. (2015). Trends in Industrial and Service Robot Application. Applied Mechanics and Materials, 791, 161–165. https://doi.org/10.4028/www.scientific.net/AMM.791.161
DOI: https://doi.org/10.4028/www.scientific.net/AMM.791.161   Google Scholar

Hajduk, M., Jenčik, P., Jezný, J., & Vargovčik, L. (2013). Trends in industrial robotics development. Applied Mechanics and Materials, 282, 1–6. https://doi.org/10.4028/www.scientific.net/AMM.282.1
DOI: https://doi.org/10.4028/www.scientific.net/AMM.282.1   Google Scholar

Jin L., Li, S., Yu, J. & He, J. (2018), Robot manipulator control using neural networks: A survey. Neurocomputing, 285, 23–34. https://doi.org/10.1016/j.neucom.2018.01.002
DOI: https://doi.org/10.1016/j.neucom.2018.01.002   Google Scholar

Kawasaki Heavy Industries. (2010). AS Language Programming.
  Google Scholar

Kawasaki Heavy Industries. (2010). Kawasaki Robots User Manual. Riexinger Information. (n.d.). Retrieved May 20, 2017, from https://riex.de/automatisierung/roboterfraesanlage
  Google Scholar

Sample image [online image]. (2014). Retrieved May 20, 2017, from http://www.boomsbeat.com/articles/1875/20140327
  Google Scholar

Sobaszek, Ł., Gola, A., & Świć A. (2017). Kierunki rozwoju robotyki w aspekcie projektowania współczesnych systemów produkcyjnych. In R. Knosala (Eds.), Innowacje w zarządzaniu i inżynierii produkcji (pp. 460–471). Opole: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
  Google Scholar

Sobaszek, Ł., Gola, A., & Varga, J. (2016). Virtual designing of robotic workstations. Applied Mechanics and Materials, 844, 31–37. https://doi.org/10.4028/www.scientific.net/AMM.844.31
DOI: https://doi.org/10.4028/www.scientific.net/AMM.844.31   Google Scholar

W fabryce Audi roboty transportują samochody. (n.d.). Retrieved March 15, 2018, from Audi Autorund Website, http://autorud.pl/audiblog/w-fabryce-audi-roboty-transportuja-samochody
  Google Scholar

Wan, W., Lu, F., Wu, Z., & Harada, K. (2017). Teaching robots to do object assembly using multimodal 3D vision. Neurocomputing, 259, 85–93. https://doi.org/10.1016/j.neucom.2017.01.077.
DOI: https://doi.org/10.1016/j.neucom.2017.01.077   Google Scholar

Xu, Y., Yang, Ch., Zhong, J., Wang, N., & Zhao, L. (2018). Robot teaching by teleoperation based on visual interaction and extreme learning machine. Neurocomputing, 275, 2093–2103. https://doi.org/10.1016/j.neucom.2017.10.034
DOI: https://doi.org/10.1016/j.neucom.2017.10.034   Google Scholar

Download


Published
2018-03-30

Cited by

CZARNECKA, A., SOBASZEK, Łukasz, & ŚWIĆ, A. (2018). 2D IMAGE-BASED INDUSTRIAL ROBOT END EFFECTOR TRAJECTORY CONTROL ALGORITHM. Applied Computer Science, 14(1), 73–83. https://doi.org/10.23743/acs-2018-07

Authors

Anna CZARNECKA 
l.sobaszek@pollub.pl
* Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin Portugal

Authors

Łukasz SOBASZEK 

Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Antoni ŚWIĆ 

Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological Systems of Information, Nadbystrzycka 36, 20-618 Lublin Poland

Statistics

Abstract views: 197
PDF downloads: 28


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.