CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT

Jarosław ZUBRZYCKI

j.zubrzycki@pollub.pl
Lublin University of Technology, Lublin (Poland)

Antoni ŚWIĆ


Lublin University of Technology, Lublin (Poland)

Łukasz SOBASZEK


Lublin University of Technology, Lublin (Poland)

Juraj KOVAC


Slovak Academy of Sciences, Bratislava (Slovakia)

Ruzena KRALIKOVA


Technical University of Kosice, Kosice (Slovakia)

Robert JENCIK


Manex s.r.o, Čaňa (Slovakia)

Natalia SMIDOVA


Technical University of Kosice, Kosice (Slovakia)

Polyxeni ARAPI


Technical University of Crete, Chania (Greece)

Peter DULENCIN


Spojená škola Juraja Henischa, Bardejov (Slovakia)

Jozef HOMZA


Spojená škola Juraja Henischa, Bardejov (Slovakia)

Abstract

The continuous development of production processes is currently observed in the fourth industrial revolution, where the key place is the digital transformation of production is known as Industry 4.0. The main technologies in the context of Industry 4.0 consist Cyber-Physical Systems (CPS) and Internet of Things (IoT), which create the capabilities needed for smart factories. Implementation of CPS solutions result in new possibilities creation – mainly in areas such as remote diagnosis, remote services, remote control, condition monitoring, etc. In this paper, authors indicated the importance of Cyber-Physical Systems in the process of the Industry 4.0 and the Smart Manufacturing development. Firstly, the basic information about Cyber-Physical Production Systems were outlined. Then, the alternative definitions and different authors view of the problem were discussed. Secondly, the conceptual model of Cybernetic Physical Production System was presented. Moreover, the case study of proposed solution implementation in the real manufacturing process was presented. The key stage of the verification concerned the obtained data analysis and results discussion.


Keywords:

Industry 4.0, CPS, IoT, machine monitoring

ADDI-DATA. (2015, November 18). CPS Cyber Physical Systems. https://addi-data.com/cps-cyber-physicalsystems
  Google Scholar

Al-Alia, R., Guptab, R., & Nabulsic, A. (2018). Cyber Physical Systems Role in Manufacturing Technologies.
  Google Scholar

AIP Conference Proceedings, 1957, 050007. https://doi.org/10.1063/1.5034337
DOI: https://doi.org/10.1063/1.5034337   Google Scholar

ASTOR. (2020a). AS72CTR001: Instruction manual.
  Google Scholar

ASTOR. (2020b). AS72POM300: Instruction manual.
  Google Scholar

ASTOR. (2021). Bezprzewodowy, łatwy w integracji system monitoringu energii dla przemysłu. COMODIS. https://www.comodis.pl
  Google Scholar

ASTRAADA. (2015). ECC22XX Ethernet Controller Compact. User’s Manual.
  Google Scholar

Cardin, O. (2019). Classification of cyber-physical production systems applications: Proposition of an analysis framework. Computers in Industry, 104, 11–21. https://doi.org/10.1016/j.compind.2018.10.002
DOI: https://doi.org/10.1016/j.compind.2018.10.002   Google Scholar

Gengarle, M. V., Bensalem, S., McDermid, J., Sangiovanni-Vincentelli, A., & Törngre, M. (2013). Characteristics, Capabilities, Potential Applications of Cyber–Physical Systems: a Preliminary analysis. CyPhERS Cyber-Physical European Roadmap & Strategy (Deliverable D2.1 – CPS Domain: Initial Synthesis).
  Google Scholar

Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6) 205–212.
  Google Scholar

Gola, A., & Świć, A. (2013). Design of storage subsystem of flexible manufacturing system using the computer simulation method. Actual Problems of Economics, 142(4), 312–318.
  Google Scholar

Harrison, R., Vera, D., Ahmad, B. (2016). Engineering Methods and Tools for Cyber–Physical Automation Systems. Proceedings of the IEEE, 104(5), 973–985. https://doi.org/10.1109/JPROC.2015.2510665
DOI: https://doi.org/10.1109/JPROC.2015.2510665   Google Scholar

Huebner, A., Facchi, Ch., Meyer, M., & Janicke, H. (2013). RFID systems from a cyber-physical systems perspective. Proceedings of the 11th International Workshop on Intelligent Solutions in Embedded Systems (WISES) (pp. 1–6). IEEE.
  Google Scholar

i-SCOOP (2021). Industry 4.0 and the fourth industrial revolution explained. i-SCOOP. https://www.iscoop.eu/industry-4-0
  Google Scholar

Klimeš, J. (2014). Using Formal Concept Analysis for Control in Cyber-physical Systems. Procedia Engineering, 69, 1518–1522. https://doi.org/10.1016/j.proeng.2014.03.149
DOI: https://doi.org/10.1016/j.proeng.2014.03.149   Google Scholar

Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9–13. http://doi.org/10.1016/j.procir.2014.03.115
DOI: https://doi.org/10.1016/j.procir.2014.03.115   Google Scholar

Onik, M. M. H., Kim, C., Yang, J. (2019). Personal Data Privacy Challenges of the Fourth Industrial Revolution. 21st International Conference on Advanced Communication Technology (ICACT) (pp. 635–638). IEEE. http://doi.org/10.23919/ICACT.2019.8701932
DOI: https://doi.org/10.23919/ICACT.2019.8701932   Google Scholar

Ratchev, S. (2017). Cyber-Physical Production Systems. Engineering and Physical Sciences Research Council. https://connectedeverythingmedia.files.wordpress.com/2018/06/cyber-physical-production-systems.pdf
  Google Scholar

Sabella, R. (2018, October 2). Cyber physical systems for Industry 4.0. Ericsson. https://www.ericsson.com/en/blog/2018/10/cyber-physical-systems-for-industry-4.0
  Google Scholar

Schuh, G., Potente, T., Varandani, R., Hausberg, C., & Fränken, B. (2014). Collaboration Moves Productivity to the Next Level. Procedia CIRP, 17, 3–8. http://doi.org10.1016/j.procir.2014.02.037
DOI: https://doi.org/10.1016/j.procir.2014.02.037   Google Scholar

Strang, D., & Anderl, R. (2014). Assembly Process driven Component Data Model in Cyber-Physical Production Systems. Proceedings of the World Congress on Engineering and Computer Science. http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp947-952.pdf
  Google Scholar

Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
  Google Scholar

Szabelski, J., Krawczuk, A., & Dominczuk, J. (2014). Economic considerations of disassembly process automation. Actual Problems of Economics, 162(12), 477–485.
  Google Scholar

Vogel-Heuser, B., Lee, J., & Leitão, P. (2015). Agents enabling cyber-physical production systems. Automatisierungstechnik, 63(10), 777–789. https://doi.org/10.1515/auto-2014-1153
DOI: https://doi.org/10.1515/auto-2014-1153   Google Scholar

Yasniy, O., Pyndus, Y., Iasnii, V., & Lapusta, Y. (2017). Residual lifetime assessment of thermal power plant superheater header. Engineering Failure Analysis, 82, 390–403. https://doi.org/10.1016/j.engfailanal.2017.07.028
DOI: https://doi.org/10.1016/j.engfailanal.2017.07.028   Google Scholar

Download


Published
2021-12-30

Cited by

ZUBRZYCKI, J., ŚWIĆ, A., SOBASZEK, Łukasz, KOVAC, J., KRALIKOVA, R., JENCIK, R., … HOMZA, J. (2021). CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT. Applied Computer Science, 17(4), 84–99. https://doi.org/10.23743/acs-2021-31

Authors

Jarosław ZUBRZYCKI 
j.zubrzycki@pollub.pl
Lublin University of Technology, Lublin Poland

Authors

Antoni ŚWIĆ 

Lublin University of Technology, Lublin Poland

Authors

Łukasz SOBASZEK 

Lublin University of Technology, Lublin Poland

Authors

Juraj KOVAC 

Slovak Academy of Sciences, Bratislava Slovakia

Authors

Ruzena KRALIKOVA 

Technical University of Kosice, Kosice Slovakia

Authors

Robert JENCIK 

Manex s.r.o, Čaňa Slovakia

Authors

Natalia SMIDOVA 

Technical University of Kosice, Kosice Slovakia

Authors

Polyxeni ARAPI 

Technical University of Crete, Chania Greece

Authors

Peter DULENCIN 

Spojená škola Juraja Henischa, Bardejov Slovakia

Authors

Jozef HOMZA 

Spojená škola Juraja Henischa, Bardejov Slovakia

Statistics

Abstract views: 59
PDF downloads: 7


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.