CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT
Article Sidebar
Open full text
Issue Vol. 17 No. 4 (2021)
-
BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING
Lukas BAUER, Leon STÜTZ, Markus KLEY5-19
-
IMPLEMENTATION OF A HARDWARE TROJAN CHIP DETECTOR MODEL USING ARDUINO MICROCONTROLLER
Kadeejah ABDULSALAM, John ADEBISI, Victor DUROJAIYE20-33
-
ARTIFICIAL NEURAL NETWORK BASED DEMAND FORECASTING INTEGRATED WITH FEDERAL FUNDS RATE
Anupa ARACHCHIGE, Ranil SUGATHADASA, Oshadhi HERATH, Amila THIBBOTUWAWA34-44
-
DETECTION OF FILLERS IN THE SPEECH BY PEOPLE WHO STUTTER
Waldemar SUSZYŃSKI, Małgorzata CHARYTANOWICZ, Wojciech ROSA, Leopold KOCZAN, Rafał STĘGIERSKI45-54
-
CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION
Rowell HERNANDEZ, Robert ATIENZA55-74
-
KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS
Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA75-83
-
CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT
Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA84-99
-
PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM
Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI100-109
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
The continuous development of production processes is currently observed in the fourth industrial revolution, where the key place is the digital transformation of production is known as Industry 4.0. The main technologies in the context of Industry 4.0 consist Cyber-Physical Systems (CPS) and Internet of Things (IoT), which create the capabilities needed for smart factories. Implementation of CPS solutions result in new possibilities creation – mainly in areas such as remote diagnosis, remote services, remote control, condition monitoring, etc. In this paper, authors indicated the importance of Cyber-Physical Systems in the process of the Industry 4.0 and the Smart Manufacturing development. Firstly, the basic information about Cyber-Physical Production Systems were outlined. Then, the alternative definitions and different authors view of the problem were discussed. Secondly, the conceptual model of Cybernetic Physical Production System was presented. Moreover, the case study of proposed solution implementation in the real manufacturing process was presented. The key stage of the verification concerned the obtained data analysis and results discussion.
Keywords:
References
ADDI-DATA. (2015, November 18). CPS Cyber Physical Systems. https://addi-data.com/cps-cyber-physicalsystems
Al-Alia, R., Guptab, R., & Nabulsic, A. (2018). Cyber Physical Systems Role in Manufacturing Technologies.
AIP Conference Proceedings, 1957, 050007. https://doi.org/10.1063/1.5034337 DOI: https://doi.org/10.1063/1.5034337
ASTOR. (2020a). AS72CTR001: Instruction manual.
ASTOR. (2020b). AS72POM300: Instruction manual.
ASTOR. (2021). Bezprzewodowy, łatwy w integracji system monitoringu energii dla przemysłu. COMODIS. https://www.comodis.pl
ASTRAADA. (2015). ECC22XX Ethernet Controller Compact. User’s Manual.
Cardin, O. (2019). Classification of cyber-physical production systems applications: Proposition of an analysis framework. Computers in Industry, 104, 11–21. https://doi.org/10.1016/j.compind.2018.10.002 DOI: https://doi.org/10.1016/j.compind.2018.10.002
Gengarle, M. V., Bensalem, S., McDermid, J., Sangiovanni-Vincentelli, A., & Törngre, M. (2013). Characteristics, Capabilities, Potential Applications of Cyber–Physical Systems: a Preliminary analysis. CyPhERS Cyber-Physical European Roadmap & Strategy (Deliverable D2.1 – CPS Domain: Initial Synthesis).
Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6) 205–212.
Gola, A., & Świć, A. (2013). Design of storage subsystem of flexible manufacturing system using the computer simulation method. Actual Problems of Economics, 142(4), 312–318.
Harrison, R., Vera, D., Ahmad, B. (2016). Engineering Methods and Tools for Cyber–Physical Automation Systems. Proceedings of the IEEE, 104(5), 973–985. https://doi.org/10.1109/JPROC.2015.2510665 DOI: https://doi.org/10.1109/JPROC.2015.2510665
Huebner, A., Facchi, Ch., Meyer, M., & Janicke, H. (2013). RFID systems from a cyber-physical systems perspective. Proceedings of the 11th International Workshop on Intelligent Solutions in Embedded Systems (WISES) (pp. 1–6). IEEE.
i-SCOOP (2021). Industry 4.0 and the fourth industrial revolution explained. i-SCOOP. https://www.iscoop.eu/industry-4-0
Klimeš, J. (2014). Using Formal Concept Analysis for Control in Cyber-physical Systems. Procedia Engineering, 69, 1518–1522. https://doi.org/10.1016/j.proeng.2014.03.149 DOI: https://doi.org/10.1016/j.proeng.2014.03.149
Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9–13. http://doi.org/10.1016/j.procir.2014.03.115 DOI: https://doi.org/10.1016/j.procir.2014.03.115
Onik, M. M. H., Kim, C., Yang, J. (2019). Personal Data Privacy Challenges of the Fourth Industrial Revolution. 21st International Conference on Advanced Communication Technology (ICACT) (pp. 635–638). IEEE. http://doi.org/10.23919/ICACT.2019.8701932 DOI: https://doi.org/10.23919/ICACT.2019.8701932
Ratchev, S. (2017). Cyber-Physical Production Systems. Engineering and Physical Sciences Research Council. https://connectedeverythingmedia.files.wordpress.com/2018/06/cyber-physical-production-systems.pdf
Sabella, R. (2018, October 2). Cyber physical systems for Industry 4.0. Ericsson. https://www.ericsson.com/en/blog/2018/10/cyber-physical-systems-for-industry-4.0
Schuh, G., Potente, T., Varandani, R., Hausberg, C., & Fränken, B. (2014). Collaboration Moves Productivity to the Next Level. Procedia CIRP, 17, 3–8. http://doi.org10.1016/j.procir.2014.02.037 DOI: https://doi.org/10.1016/j.procir.2014.02.037
Strang, D., & Anderl, R. (2014). Assembly Process driven Component Data Model in Cyber-Physical Production Systems. Proceedings of the World Congress on Engineering and Computer Science. http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp947-952.pdf
Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
Szabelski, J., Krawczuk, A., & Dominczuk, J. (2014). Economic considerations of disassembly process automation. Actual Problems of Economics, 162(12), 477–485.
Vogel-Heuser, B., Lee, J., & Leitão, P. (2015). Agents enabling cyber-physical production systems. Automatisierungstechnik, 63(10), 777–789. https://doi.org/10.1515/auto-2014-1153 DOI: https://doi.org/10.1515/auto-2014-1153
Yasniy, O., Pyndus, Y., Iasnii, V., & Lapusta, Y. (2017). Residual lifetime assessment of thermal power plant superheater header. Engineering Failure Analysis, 82, 390–403. https://doi.org/10.1016/j.engfailanal.2017.07.028 DOI: https://doi.org/10.1016/j.engfailanal.2017.07.028
Article Details
Abstract views: 603
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
