BACKWARD MOTION PLANNING AND CONTROL OF MULTIPLE MOBILE ROBOTS MOVING IN TIGHTLY COUPLED FORMATIONS
Article Sidebar
Open full text
Issue Vol. 17 No. 3 (2021)
-
PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION
K. Raju, Niranjan N Chiplunkar5-18
-
BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK
Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN19-30
-
APPLICATION OF A FUZZY CONTROLLER IN THE PROCESS OF AUTOMATED POLYETHYLENE FILM THICKNESS CONTROL
Andrzej Jardzioch, Wioletta Marczak31-46
-
OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT
Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY47-59
-
BACKWARD MOTION PLANNING AND CONTROL OF MULTIPLE MOBILE ROBOTS MOVING IN TIGHTLY COUPLED FORMATIONS
Kuppan Chetty RAMANATHAN, Manju MOHAN, Joshuva AROCKIA DHANRAJ60-72
-
RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM
Sunil Kumar B L, Sharmila Kumari M73-81
-
IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES
Pannangi Naresh, R. Suguna82-91
-
INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY
Mateusz Sawa, Mirosław Szala, Weronika Henzler92-105
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
This work addresses the development of a distributed switching control strategy to drive the group of mobile robots in both backward and forward motion in a tightly coupled geometric pattern, as a solution for the deadlock situation that arises while navigating the unknown environment. A generalized closed-loop tracking controller considering the leader referenced model is used for the robots to remain in the formation while navigating the environment. A tracking controller using the simple geometric approach and the Instantaneous Centre of Radius (ICR), to drive the robot in the backward motion during deadlock situation is developed and presented. State-Based Modelling is used to model the behaviors/motion states of the proposed approach in MATLAB/STATEFLOW environment. Simulation studies are carried out to test the performance and error dynamics of the proposed approach combining the formation, navigation, and backward motion of the robots in all geometric patterns of formation, and the results are discussed.
Keywords:
References
Alonso-Mora, J., Baker, S., & Rus, D. (2017). Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research, 36(9), 1000–1021. http://doi.org/10.1177/0278364917719333 DOI: https://doi.org/10.1177/0278364917719333
Arkin, R.C. (1998). Behavior-Based Robotics. MIT Press.
Barfoot, T.D., & Clark, C.M. (2004). Motion planning for Formations of Mobile Robots. International Journal of Robotics and Autonomous Systems, 46, 65–78. http://doi.org/10.1016/j.robot.2003.11.004 DOI: https://doi.org/10.1016/j.robot.2003.11.004
Cheng, J., Wang, B., Zhang, Y., & Wang, Z. (2017). Backward Orientation Tracking Control of Mobile Robot with N Trailers. International Journal of Control, Automation, and Systems, 15, 867–874. http://doi.org/10.1007/s12555-015-0382-7 DOI: https://doi.org/10.1007/s12555-015-0382-7
Chung, W., Park, M., Yoo, K., Roh, J., and Choi, J. (2011). Backward-motion control of a mobile robot with n passive off-hooked trailers. Journal of Mechanical Science and Technology, 25(11), 2895–2905. http://doi.org/10.1007/s12206-011-0909-7 DOI: https://doi.org/10.1007/s12206-011-0909-7
Dougherty, R., Ochoa, V., Randles, Z., & Kitts, C. (2004). A Behavioral Control approach to formation keeping through an obstacles field. In Proceedings of the IEEE Aerospace Conference (pp. 168–175, vol. 1). IEEE. http://doi.org/10.1109/AERO.2004.1367602 DOI: https://doi.org/10.1109/AERO.2004.1367602
Kuppan Chetty, R.M., Nagarajan, T., Karsiti, N.B., & Singaperumal, M. (2012). State Based Modelling and Control of a Multi Robot Systems Using Simulink/Stateflow. Journal of Applied Sciences, 12(24), 2494–2502. http://doi.org/jas.2012.2494.2502 DOI: https://doi.org/10.3923/jas.2012.2494.2502
Kuppan Chetty, R.M., Singaperumal, M., & Nagarajan, T. (2011a). Behavior Based Multi Robot Formations with Active Obstacle Avoidance Based on Switching Control Strategy. Journal of Advanced Materials Research, 443-440, 6630–6635. http://doi.org/10.4028/www.scientific.net/AMR.433-440.6630 DOI: https://doi.org/10.4028/www.scientific.net/AMR.433-440.6630
Kuppan Chetty, R.M., Singaperumal, M., & Nagarajan, T. (2011b). Distributed Formation planning and Navigation framework of Wheeled Mobile Robots. Journal of Applied Sciences, 11(9), 1501–1509. http://doi.org/10.3923/jas.2011.1501.1509 DOI: https://doi.org/10.3923/jas.2011.1501.1509
Kuppan Chetty, R.M., Singaperumal, M., Nagarajan, T., & Inamura, T. (2011). Coordination Control of Wheeled Mobile Robots – A Hybrid Approach. International Journal of Computer Applications in Technology, 41(3/4), 195–204. http://doi.org/10.1504/IJCAT.2011.042695 DOI: https://doi.org/10.1504/IJCAT.2011.042695
Lee, G., & Chwa, D. (2018). Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, 11, 127–138. http://doi.org/10.1007/s11370-017-0240-y DOI: https://doi.org/10.1007/s11370-017-0240-y
Li, X., & Xiao, J. (2005). Robot formation control in Leader-Follower Motion Using Direct Lyapunov Method. International Journal of Intelligent Control and Systems, 10(2), 244–259.
Ma, Y., Zhang, Y., Cheng, J., & Zhao, Q.J. (2014). Backward Path Tracking of Mobile Robot with Two Trailers. Applied Mechanics and Materials, 716-717, 1512-1517. http://doi.org/10.4028/www.scientific.net/AMM.716-717.1512 DOI: https://doi.org/10.4028/www.scientific.net/AMM.716-717.1512
Mataric, M.J., & Michaud, F. (2008). Behavior Based Systems. In B. Siciliano & O. Khatib (Eds.), Handbook of Robotics (pp. 891–909). Springer. DOI: https://doi.org/10.1007/978-3-540-30301-5_39
Petrov, P. (2010) Nonlinear Backward Tracking Control of an Articulated Mobile Robot with Off axle hitching. In Proceedings of the 9th WSEAS International Conference on Recent Advances in Signal Processing, Robotics and Automation (pp. 269–273). The ACM Digital Library.
Petukhov, S.V., & Rachkov, M.Y. (2009). Navigation Method of Autonomous Robot Backward Motion by Remembered Landmarks. Mobile Robotics, 19–25. https://doi.org/10.1142/9789814291279_0005 DOI: https://doi.org/10.1142/9789814291279_0005
Soni, A., & Hu, H. (2018). Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey. Robotics, 7(4), 67. http://doi.org/10.3390/robotics7040067 DOI: https://doi.org/10.3390/robotics7040067
Wang, Q., & Phillips, C. (2014). Cooperative Path Planning for Multi-Vehicle Systems. Electronics, 3, 636–660. http://doi.org/10.3390/electronics3040636 DOI: https://doi.org/10.3390/electronics3040636
Werger, B.B., & Mataric, M.J. (2001). From insect to internet: situated control for Networked Robot Teams. Annals of Mathematics and Artificial Intelligence, 31, 173–197. http://doi.org/10.1023/A:1016650101473 DOI: https://doi.org/10.1023/A:1016650101473
Xu, D., Zhang, X., Zhu, Z., Chen, C., & Yang, P. (2014). Behavior-Based Formation Control of Swarm Robots. Mathematical Problems in Engineering, 2014, 205759. http://doi.org/10.1155/2014/205759 DOI: https://doi.org/10.1155/2014/205759
Article Details
Abstract views: 433
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
