MEDICAL IMAGING AND 3D RECONSTRUCTION FOR OBTAINING THE GEOMETRICAL AND PHYSICAL MODEL OF A CONGENITAL BILATERAL RADIO-ULNAR SYNOSTOSIS

Robert KARPIŃSKI

r.karpinski@pollub.pl
* Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Józef JONAK


Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

Jacek MAKSYMIUK


* Orthopedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Łęczna (Poland)

Abstract

The paper presents results of a 3D reconstruction of a congenital bilateral radio-ulnar synostosis. Basics of anatomy and biomechanical analysis of the elbow joint were introduced. Case report of a congenital bilateral radio-ulnar synostosis was presented. Based on the data from computed tomography imaging, the model of a congenital bilateral radio-ulnar synostosis was constructed. Basic information on reverse engineering, rapid prototyping and methods of making physical models are presented. The creation of physical models was aimed at pre-operative planning and conceptualization. Physical models were also used in the educational form at the stage of communication with the patient.


Keywords:

computed tomography, rapid prototyping, reverse engineering

Al-Saadi, Z. S., & Havekrog, B. H. (2008). Congenital radioulnar synostosis. Ugeskr Laeger, 170(40), 3147–3148.
Bagaria, V., Deshpande, S., Rasalkar, D. D., Kuthe, A., & Paunipagar, B. K. (2011). Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. European journal of radiology, 80(3), 814–820.
Brown, G. A., Firoozbakhsh, K., DeCoster, T. A., Reyna Jr, J. R., & Moneim, M. (2003). Rapid prototyping: the future of trauma surgery? The Journal of Bone and Joint Surgery, 85, 49–55.
Budzik, G., Dziubek, T., & Turek, P. (2015). Podstawowe czynniki wpływające na jakość obrazów tomograficznych. Problemy Nauk Stosowanych, 3, 077–084.
Fahlstrom, S. (1932). Radio-ulnar synostosis: historical review and case report. The Journal of Bone and Joint Surgery, 14(2), 395–403.
Frame, M., & Huntley, J. S. (2012). Rapid prototyping in orthopaedic surgery: a user's guide. The Scientific World Journal, 2012, 838575. doi:10.1100/2012/838575
Guarino, J., Tennyson, S., McCain, G., Bond, L., Shea, K., & King, H. (2007). Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. Journal of Pediatric Orthopaedics, 27(8), 955–960.
Hansen, O. H., & Andersen, N. O. (1970). Congenital radio-ulnar synostosis. Report of 37 cases. Acta Orthopaedica Scandinavica, 41(3), 225–230.
Holubar, S. D., Hassinger, J. P., & Dozois, E. J. (2009). Virtual pelvic anatomy and surgery simulator: an innovative tool for teaching pelvic surgical anatomy. Studies in Health Technology and Informatics, 142, 122–124.
Hurson, C., Tansey, A., O’Donnchadha, B., Nicholson, P., Rice, J., & McElwain, J. (2007). Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury, 38(10), 1158–1162.
Karpiński, R., Jaworski, Ł., & Zubrzycki, J. (2016). Structural analysis of articular cartilage of the hip joint using finite element method. Advances in Science and Technology Research Journal, 10(31), 240–246. https://doi.org/10.12913/22998624/64064
Karpiński, R., Jaworski, Ł., & Zubrzycki, J. (2017). The design and structural analysis of the endoprosthesis of the shoulder joint. ITM Web of Conferences, 15, 07015. https://doi.org/10.1051/itmconf/20171507015
Karpiński, R., Jaworski, Ł., Szala, M., & Mańko, M. (2017). Influence of patient position and implant material on the stress distribution in an artificial intervertebral disc of the lumbar vertebrae. ITM Web of Conferences, 15, 07006. https://doi.org/10.1051/itmconf/20171507006
Kozłowska, E., & Zubrzycki, J. (2017). Using methods of the reverse engineering to carry personalised preoperative stabilisers out on the example of vertebrae of human spine. ITM Web of Conferences, 15, 02007. https://doi.org/10.1051/itmconf/20171502007
McGurk, M., Potamianos, P., Amis, A. A., & Goodger, N. M. (1997). Rapid prototyping techniques for anatomical modelling in medicine. Annals of the Royal College of Surgeons of England, 79(3), 169–174.
Mulford, J. S., Babazadeh, S., & Mackay, N. (2016). Three dimensional printing in orthopaedic surgery: review of current and future applications. ANZ Journal of Surgery, 86(9), 648–653.
Petzold, R., Zeilhofer, H. F., & Kalender, W. A. (1999). Rapid prototyping technology in medicine – basics and applications. Computerized Medical Imaging and Graphics, 23(5), 277–284.
Ratajczyk, E. (2012). Rentgenowska tomografia komputerowa (CT) do zadań przemysłowych. Pomiary Automatyka Robotyka, 16, 104–113.
Rizzo, R., Pavone, V., Corsello, G., Sorge, G., & Opitz, J. M. (1997). Autosomal dominant and sporadic radio-ulnar synostosis. American Journal of Medical Genetics, 68(2), 127–134.
Skalski, K., Grygoruk, R., Makuch, A., & Dąbrowska-Tkaczyk, A. (2015). Modelowanie wirtualne i materialne na potrzeby komputerowego wspomagania zabiegów operacyjnych. In M. Gzik, M.
Pawlikowski, M. Lewandowska-Szumieł & M. Wychowański (Eds.), Biomechanika i Inżynieria Biomedyczna (pp. 481–498). Akademicka Oficyna Wydawnicza EXIT.
Skalski, K., & Haraburda, M. (2009). Komputerowe wspomagane projektowanie i wytwarzanie implantów stawów człowieka. Monografia nr 137. Radom: Wydawnictwo Politechniki Radomskiej.
Zubrzycki, J., & Braniewska, M. (2017). Zastosowanie inżynierii odwrotnej w projektowaniu spersonalizowanego implantu stawu biodrowego. Mechanik, 90(1), 46–47.
Zubrzycki, J., Karpiński, R., & Górniak, B. (2016). Computer aided design and structural analysis of the endoprosthesis of the knee joint. Applied Computer Science, 12(2), 84–95.
Download


Published
2018-03-30

Cited by

KARPIŃSKI, R. ., JONAK, J., & MAKSYMIUK, J. (2018). MEDICAL IMAGING AND 3D RECONSTRUCTION FOR OBTAINING THE GEOMETRICAL AND PHYSICAL MODEL OF A CONGENITAL BILATERAL RADIO-ULNAR SYNOSTOSIS. Applied Computer Science, 14(1), 84–93. https://doi.org/10.23743/acs-2018-08

Authors

Robert KARPIŃSKI 
r.karpinski@pollub.pl
* Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Józef JONAK 

Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Jacek MAKSYMIUK 

* Orthopedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Łęczna Poland

Statistics

Abstract views: 141
PDF downloads: 16


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)