EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This study investigates the application of large language models, particularly ChatGPT, in the extraction and structuring of medical information from free-text patient reports. The authors explore two distinct methods: a zero-shot extraction approach and a schema-based extraction approach. The dataset, consisting of 1230 anonymized French medical reports from the Department of Neonatology of the Mohammed VI University Hospital, served as the basis for these experiments. The findings indicate that while ChatGPT demonstrates a significant capability in structuring medical data, certain challenges remain, particularly with complex and non-standardized text formats. The authors evaluate the model's performance using precision, recall, and F1 score metrics, providing a comprehensive assessment of its applicability in clinical settings.
Keywords:
References
Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., & Sontag, D. (2022). Large Language Models are few-shot clinical information extractors. ArXiv, abs/2205.12689. https://doi.org/10.48550/arXiv.2205.12689 DOI: https://doi.org/10.18653/v1/2022.emnlp-main.130
Bergomi, L., Tommaso, M., Antonazzo, P., Alberghi, L., Bellazzi, R., Preda, L., Bortolotto, C., & Parimbelli, E. (2024). Reshaping free-text radiology notes into structured reports with generative question answering transformers. Artificial Intelligence in Medicine, 154, 102924. https://doi.org/10.1016/j.artmed.2024.102924 DOI: https://doi.org/10.1016/j.artmed.2024.102924
Bhate, N., Mittal, A., He, Z., & Luo, X. (2023). Zero-shot learning with minimum instruction to extract social determinants and family history from clinical notes using GPT Model. IEEE International Conference on Big Data (BigData) (pp. 1476-1480). IEEE. https://doi.org/10.1109/BigData59044.2023.10386811 DOI: https://doi.org/10.1109/BigData59044.2023.10386811
Huang, J., Yang, D. M., Rong, R., Nezafati, K., Treager, C., Chi, Z., Wang, S., Cheng, X., Guo, Y., Klesse, L. J., Xiao, G., Peterson, E. D., Zhan, X., & Xie, Y. (2024). A critical assessment of using ChatGPT for extracting structured data from clinical notes. Npj Digital Medicine, 7(1), 106. https://doi.org/10.1038/s41746-024-01079-8 DOI: https://doi.org/10.1038/s41746-024-01079-8
Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., & Liu, T. (2024). A Survey on hallucination in Large Language Models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 3703155. https://doi.org/10.1145/3703155 DOI: https://doi.org/10.1145/3703155
Kaddari, Z., Mellah, Y., Berrich, J., Belkasmi, M. G., & Bouchentouf, T. (2021). Natural language processing: challenges and future directions. In T. Masrour, I. El Hassani, & A. Cherrafi (Eds.), Artificial Intelligence and Industrial Applications (Vol. 144, pp. 236–246). Springer International Publishing. https://doi.org/10.1007/978-3-030-53970-2_22 DOI: https://doi.org/10.1007/978-3-030-53970-2_22
Kernberg, A., Gold, J., & Mohan, V. (2024). Using ChatGPT-4 to create structured medical notes from audio recordings of physician-patient encounters: Comparative study. Journal of Medical Internet Research, 26, e54419. https://doi.org/10.2196/54419 DOI: https://doi.org/10.2196/54419
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. ArXiv, abs/2203.02155. https://doi.org/10.48550/arXiv.2203.02155
Patra, B. G., Lepow, L. A., Kasi Reddy Jagadeesh Kumar, P., Vekaria, V., Sharma, M. M., Adekkanattu, P., Fennessy, B., Hynes, G., Landi, I., Sanchez-Ruiz, J. A., Ryu, E., Biernacka, J. M., Nadkarni, G. N., Talati, A., Weissman, M., Olfson, M., Mann, J. J., Zhang, Y., Charney, A. W., & Pathak, J. (2024). Extracting social support and social isolation information from clinical psychiatry notes: Comparing a rule-based natural language processing system and a large language model. Journal of the American Medical Informatics Association. https://doi.org/10.1093/jamia/ocae260 DOI: https://doi.org/10.1093/jamia/ocae260
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. https://doi.org/10.1016/j.iotcps.2023.04.003 DOI: https://doi.org/10.1016/j.iotcps.2023.04.003
Straka, M., Náplava, J., Straková, J., & Samuel, D. (2021). RobeCzech: Czech RoBERTa, a monolingual contextualized language representation model. In K. Ekštein, F. Pártl, & M. Konopík (Eds.), Text, Speech, and Dialogue (Vol. 12848, pp. 197-209). Springer International Publishing. https://doi.org/10.1007/978-3-030-83527-9_17 DOI: https://doi.org/10.1007/978-3-030-83527-9_17
Tsai, R. T.-H., Wu, S.-H., Chou, W.-C., Lin, Y.-C., He, D., Hsiang, J., Sung, T.-Y., & Hsu, W.-L. (2006). Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics, 7, 92. https://doi.org/10.1186/1471-2105-7-92 DOI: https://doi.org/10.1186/1471-2105-7-92
Yifan, Y., Jinhao, D., Kaidi, X., Yuanfang, C., Zhibo, S., & Yue, Z. (2024). A survey on large language model (LLM) security and privacy: The Good, The Bad, and The Ugly. High-Confidence Computing, 4(2), 100211. https://doi.org/10.1016/j.hcc.2024.100211 DOI: https://doi.org/10.1016/j.hcc.2024.100211
Zelina, P., Halamkova, J., & Novacek, V. (2022). Unsupervised extraction, labelling and clustering of segments from clinical notes. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1362-1368). IEEE. http://dx.doi.org/10.1109/BIBM55620.2022.9995229 DOI: https://doi.org/10.1109/BIBM55620.2022.9995229
Zhan, X., Humbert-Droz, M., Mukherjee, P., & Gevaert, O. (2021). Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases. Patterns, 2(7), 100289. https://doi.org/10.1016/j.patter.2021.100289 DOI: https://doi.org/10.1016/j.patter.2021.100289
Article Details
Abstract views: 550
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
