The Application of Berkovich nanoindenter to the study of interfacial transition zone in concretes containing fly-ash

Grzegorz Golewski


Department of Civil Engineering; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0001-9325-666X

Abstract

The paper presents the results of nanohardness (HB) in the Interfacial Transition Zones (ITZ) of concretes with the addition of 0, 20 and 30% siliceous fly ashes (FA). A compact platform CSM Instruments was used in the testing. An area in the ITZ of coarse aggregates with paste was analysed in the five measurement points during the experiments, i.e. at the distance of: 5, 25, 50, 100 and 150 µm from the grain boundary. The indents in concrete were create by Berkovich indenter using DSI technique. Analysis of the results revealed that the 20% additive of FA causes a few percent increase in nanohardness, while 30% FA additive leads to between ten and twenty percent drop of HB. On the basis of nanohardness distributions in particular concretes, it was found that the most heterogeneous one is the ITZ zone within the distance of 25µm from the aggregate grain.


Keywords:

concrete, fly ash, interfacial transition zone, nanohardness

Giergiczny Z., Małolepszy J., Szwabowski J., Śliwiński J. Cementy z dodatkami mineralnymi w technologii betonów nowej generacji. Instytut Śląski Sp. z o.o., Opole 2002.
  Google Scholar

Golewski G.L. Analiza odporności na pękanie, przy trzecim modelu pękania betonów z dodatkiem popiołów lotnych. Budownictwo i Architektura 12 (3) (2013) 145-152.
  Google Scholar

Golewski G.L., Sadowski T. An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash. Construction and Building Materials 51 (2014) 207-214.
  Google Scholar

Brandt A.M. Wpływ warstwy przejściowej na właściwości mechaniczne betonów wysokowartościowych (BWW). II Konferencja Naukowo-Techniczna MATBUD’98, Kraków-Mogilany 1998, 21-30.
  Google Scholar

Barnes, B.D., Diamond, S., Dolch W.L. The contact zone between Portland cement paste and glass “aggregate” surfaces. Cement and Concrete Research 8 (1978) 233-243.
  Google Scholar

Zimbelmann R.A. Contribution to the problem of cement-aggregate bond. Cement and Concrete Research 15 (1985) 801-808.
DOI: https://doi.org/10.1016/0008-8846(85)90146-2   Google Scholar

Brandt A.M., Kasperkiewicz J. (red.) Metody diagnozowania betonów i betonów wysokowartościowych na podstawie badań strukturalnych. IPPT PAN, Warszawa 2003.
  Google Scholar

Kasperkiewicz J., Sobczak M. O możliwości oceny wytrzymałości betonu na podstawie badania mikrotwardości. Cement Wapno Beton 3 (2004) 138-142.
  Google Scholar

Lyubimova T.J., Pinus E.R. Crystallization processes in the contact zone between aggregate and matrix in the cement concrete. Kolloidnyi Zhurnal 24 (5) (1962) 578-587 (in Russian).
  Google Scholar

Wei S., Mandel J.A., Said S. Study of the interface strength in steel-fiber reinforced cement-based composites. ACI Journal 83 (1986) 597-605.
  Google Scholar

Zhu W., Bartos P.J.M. Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete. Cement and Concrete Research 30 (2000) 1299-1304.
  Google Scholar

Wang G., Kong Y., Sun T., Shui Z. Effect of water-binder ratio and fly ash on the homogeneity of concrete. Construction and Building Materials 38 (2013) 1129-1134.
  Google Scholar

Duan P., Shui Z., Chen W. Shen Ch. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Construction and Building Materials 44 (2013) 1-6.
DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.075   Google Scholar

Igarashi S., Bentur A., Mindess S. Microhardness testing of cementitious materials. Advanced Cement Based Materials 4 (1996) 48-57.
DOI: https://doi.org/10.1016/S1065-7355(96)90051-6   Google Scholar

Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7 (1992) 1564-1583.
  Google Scholar

Wang X.H., Jacobsen S., He J.Y., Zhang Z.L., Lee S.F., Lein H.L. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cement and Concrete Research 39 (2009) 701-715.
  Google Scholar

Mondal P., Shah S.P., Marks L.D. Nanoscale characterization of cementitious materials. ACI Materials Journal 105 (2008) 174-179.
  Google Scholar

Xiao J., Li W., Sun Z., Lange D.A., Shah S.P. Properties of interfacial transition zone in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites 37 (2013) 276-292.
  Google Scholar

Trik P., Bartos P.J.M. Micromechanical properties of cementitious composites. Materials and Structures 32 (1999) 388-393.
  Google Scholar

Velez K., Maximilien S., Damidot D., Fantozzi G., Sorrentino F. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement and Concrete Research 31 (2001) 555-561.
  Google Scholar

Glinicki M.A., Kasperkiewicz J., Sobczak M., Zieliński M. Badanie mikrotwardości betonu za pomocą wgłębnika Vickersa. 49 Konferencja Naukowa KILiW PAN i KN PZITB, Warszawa-Krynica 2003, t. III, 139-146.
  Google Scholar

Glinicki M.A., Krzywobłocka-Laurów R., Ranachowski Z., Dąbrowski M., Wołowicz J. Analiza mikrostruktury betonów modyfikowanych dodatkiem popiołów lotnych wapiennych. Drogi i Mosty 2 (2013) 173-189.
  Google Scholar

Constantinides G., Ulm F.-J. The effects of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and Concrete Research 34 (2004) 67-80.
DOI: https://doi.org/10.1016/S0008-8846(03)00230-8   Google Scholar

Mondal P., Shah S.P., Marks L. A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement and Concrete Research 37 (2007) 1440-1444.
  Google Scholar

Sorelli L., Constantinides G., Ulm F.-J., Toutlemonde F. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques. Cement and Concrete Research 38 (2008) 1447-1456.
  Google Scholar

Zhu W., Hughes J.J. Bicanic N., Pearce Ch.J. Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Materials Characterization 58 (2007) 1189-1198.
  Google Scholar

Fischer-Cripps A.C. Nanoindentation. Second Edition. Springer - Verlag, New York, LLC 2010.
DOI: https://doi.org/10.1007/978-1-4419-9872-9_11   Google Scholar

Wang Z.-J., Wang Q., Wei Y.-F. Effects on mineral admixtures and superplasticizers on micro-hardness of aggregate-paste interface in cement concrete. Journal of Shanghai Jiaotong University (Science) 17 (5) (2012) 629-634.
DOI: https://doi.org/10.1007/s12204-012-1335-4   Google Scholar


Published
2014-06-11

Cited by

Golewski, G. (2014) “The Application of Berkovich nanoindenter to the study of interfacial transition zone in concretes containing fly-ash”, Budownictwo i Architektura, 13(2), pp. 085–092. doi: 10.35784/bud-arch.1882.

Authors

Grzegorz Golewski 

Department of Civil Engineering; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0001-9325-666X

Statistics

Abstract views: 149
PDF downloads: 120


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.