Natural vibrations of a beam on stochastic two-layered subsoil with significantly different thickness

Barbara Kaleta


Department of Structural Mechanics; Faculty of Civil Engineering; The Opole University of Technology (Poland)

Bartosz Różycki


Voivodeship Roads Administration in Opole (Poland)

Abstract

In this paper the influence of variability of Young modulus of the subsoil layers on the natural frequency of the beam-two-layered subsoil system was analyzed. Assuming the first layer was thinner and more rigid then the second one (10 and 20 times). The calculations were made by using deterministic and stochastic approach. In the stochastic approach, the spatial correlation of Young modulus of the subsoil along the length of both layers was taken into account. Two cases of the correlation were considered, i.e. without and with full correlation. Regarding the results of the authors’ research which were published in the previous article, in the calculations the full stochastic correlation of Young modulus of subsoil between both layers was taken into account. In order to solve the stochastic eigenvalue problem, Monte Carlo simulation techniques with Finite Element Method (FEM) were used. The present analysis is a continuation research demonstrated in the authors’ previous papers.

 


Keywords:

eigenvalue problem, beam, two-layered subsoil, thin layer, Monte Carlo method, random field, midpoint method

Śniady P. Podstawy stochastycznej dynamiki konstrukcji. Oficyna Wydawnicza Politechniki Wrocławskiej, 2000.
  Google Scholar

Ghanem R., Brząkała W. Stochastic finite-element analysis of soil layers. Journal of Engineering Mechanics 122 (1996) 361–369.
  Google Scholar

Przewłócki J., Górski J. Strip foundation on 2-D and 3-D random subsoil, Probabilistic Engineering Mechanics 16 (2000) 121–136.
DOI: https://doi.org/10.1016/S0266-8920(00)00014-X   Google Scholar

Palczak G., Witt M. Statyczna analiza belek spoczywających na losowym dwuparametrowym podłożu sprężystym. Materiały XX Jubileuszowej Konferencji Naukowej KIL i W PAN i KN PZITB, Krynica 1974, s. 244-252.
  Google Scholar

Kaleta B., Zembaty Z. Eigenvalue problem of a beam on stochastic Vlasov foundation. Archives of Civil Engineering LIII (2007) 447–477.
  Google Scholar

Kaleta B., Różycki B. Zagadnienie własne belki na stochastycznym, dwuwarstwowym podłożu gruntowym. Zeszyty Naukowe Politechniki Rzeszowskiej 276 (2011) 349–356.
  Google Scholar

Kolář V., Nemec I. Modelling of soil structure interaction. Akademia, 1989.
DOI: https://doi.org/10.1016/0148-9062(89)90294-5   Google Scholar

Turhan A. A consistent Vlasov model for analysis of plates on elastic foundations using the finite element method, Ph. D. Thesis. The Graduate School of Texas Technical University, Texas, 1992.
  Google Scholar

Chmielewski T., Zembaty Z. Podstawy dynamiki budowli. Arkady, 1998.
  Google Scholar

Shinozuka M. Stochastic fields and their digital simulation, w: Stochastic Methods in Structural Dynamics. (ed. Schuëller G. I., Shinozuka M.), Martinu Nijhoff Publishers, Dordrech 1987, s. 93-133.
DOI: https://doi.org/10.1007/978-94-009-3681-2_3   Google Scholar

Zieliński R. Metody Monte Carlo. WNT, 1970.
  Google Scholar

Puła W. Zastosowanie teorii niezawodności konstrukcji do oceny bezpieczeństwa fundamentów. Oficyna Wydawnicza Politechniki Wrocławskiej, 2004.
  Google Scholar


Published
2014-06-11

Cited by

Kaleta, B. and Różycki, B. (2014) “Natural vibrations of a beam on stochastic two-layered subsoil with significantly different thickness”, Budownictwo i Architektura, 13(2), pp. 215–222. doi: 10.35784/bud-arch.1898.

Authors

Barbara Kaleta 

Department of Structural Mechanics; Faculty of Civil Engineering; The Opole University of Technology Poland

Authors

Bartosz Różycki 

Voivodeship Roads Administration in Opole Poland

Statistics

Abstract views: 204
PDF downloads: 122


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.