Chloride corrosion resistance of underwater repair concrete in terms of the cutting effects of hydrostatic pressure
Elżbieta Horszczaruk
Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-0840-5048
Piotr Brzozowski
Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-4146-9203
Teresa Rucińska
Department of Roads, Bridges and Building Materials; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-2550-2480
Abstract
The paper presents the results of the study of underwater repair concrete under the effect of the salt mist. The research was conducted in accordance with the standard PN-EN 14147. Concrete samples for testing the corrosive elements of that test were taken during the first 7 days of insight in the pressure vessel and were subjected to hydrostatic pressure effects from 0,1 to 0,5 MPa. The beneficial effect of hydrostatic pressure on the corrosion resistance of tested concrete repair was. Was observed samples taken from the surface layers of the tested elements showed slightly higher resistance to chlorides which confirmed the characteristics of pore distribution of concrete in the studies.
Keywords:
underwater concrete, hydrostatic pressure, corrosionReferences
Angst U., Elsener B., Larsen C.K., Vennesland Ø. Critical chloride content in reinforced concrete - A review. Cement and Concrete Research, Vol. 39 (2009) 1122–1138.
Google Scholar
ASTM C 1202-12. Standard Test Method for Electrical Indication of Concrete’s Ability to resist Chloride Ion Penetration. Annual Book of ASTM Standards, Vol. 04.02, 2012, 7 pp.
Google Scholar
ASTM C1543 - 10a. Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding. Annual Book of ASTM Standards, Vol. 04.02, 2012, 4 pp.
Google Scholar
ASTM D1141 – 98. Standard Practice for the Preparation of Substitute Ocean Water. Annual Book of ASTM Standards, Vol. 04.02, 2012, 3 pp.
Google Scholar
Erdogdu E., Bremner T.W., Kondratova I.L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions, Cement and Concrete Research, Vol. 31 (2001) 861–867.
Google Scholar
Fiertak M., Małolepszy J. Beton jako materiał kompozytowy podlegający wpływom czynników środowiskowych. Sympozjum Nauk. Techn. „Trwałość betonu”, Kraków 2005, s. 5-39.
Google Scholar
Giergiczny Z. , Dąbrowska M. Korozja betonu. Przegląd metod badawczych. XII Sympozjum Nauk. Techn. “Reologia w Technologii Betonu. Gliwice 2010, s. 25-44.
Google Scholar
Horszczaruk E., Brzozowski P., Rudnicki T. Urządzenie do badań betonów podwodnych w warunkach oddziaływania ciśnienia hydrostatycznego, Przegląd Budowlany, nr 6 (2012) 36-38.
Google Scholar
Horszczaruk E., Brzozowski P. Wpływ ciśnienia hydrostatycznego na wytrzymałość na ściskanie betonów podwodnych. Zesz. Nauk. Polit. Rzeszowskiej, Nr 283, Budownictwo i Inżynieria Środowiska z 59 (2012), 197-204.
Google Scholar
Horszczaruk E., Brzozowski P., Adamczewski G. Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Underwater Concrete. Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago 2013.
Google Scholar
Horszczaruk E., Brzozowski P., Adamczewski G. Wpływ ciśnienia hydrostatycznego na rozwój wytrzymałości betonów cementowych układanych pod wodą, Inżynieria i Budownictwo, Nr 5 (2013), 263-266.
Google Scholar
Montes P, Bremner T.W., Lister D.H. Influence of calcium nitrite inhibitor and crack width on corrosion of steel in high performance concrete subjected to a simulated marine environment, Cement and Concrete Composites, Vol. 26 (2004), 243–253.
Google Scholar
NT Build 443 Concrete, hardened: Accelerate chloride penetration. NORDTEST. 1995, 5 pp.
Google Scholar
NT Build 492 Concrete, Mortars and cement-based repair materials: Chloride migration coefficient from non-steady migration experiments. NORDTEST. 1999, 8 pp.
Google Scholar
Safiuddin Md., Soudki K. A. Sealer and coating systems for the protection of concrete bridge structures. International Journal of the Physical Sciences Vol. 37 (2011), 8188-8199.
Google Scholar
Authors
Elżbieta HorszczarukDepartment of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-0840-5048
Authors
Piotr BrzozowskiDepartment of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-4146-9203
Authors
Teresa RucińskaDepartment of Roads, Bridges and Building Materials; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-2550-2480
Statistics
Abstract views: 255PDF downloads: 125
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.