Chloride corrosion resistance of underwater repair concrete in terms of the cutting effects of hydrostatic pressure

Elżbieta Horszczaruk


Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-0840-5048

Piotr Brzozowski


Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-4146-9203

Teresa Rucińska


Department of Roads, Bridges and Building Materials; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin (Poland)
https://orcid.org/0000-0003-2550-2480

Abstract

The paper presents the results of the study of underwater repair concrete under the effect of the salt mist. The research was conducted in accordance with the standard PN-EN 14147. Concrete samples for testing the corrosive elements of that test were taken during the first 7 days of insight in the pressure vessel and were subjected to hydrostatic pressure effects from 0,1 to 0,5 MPa. The beneficial effect of hydrostatic pressure on the corrosion resistance of tested concrete repair was. Was observed samples taken from the surface layers of the tested elements showed slightly higher resistance to chlorides which confirmed the characteristics of pore distribution of concrete in the studies.


Keywords:

underwater concrete, hydrostatic pressure, corrosion

Angst U., Elsener B., Larsen C.K., Vennesland Ø. Critical chloride content in reinforced concrete - A review. Cement and Concrete Research, Vol. 39 (2009) 1122–1138.
  Google Scholar

ASTM C 1202-12. Standard Test Method for Electrical Indication of Concrete’s Ability to resist Chloride Ion Penetration. Annual Book of ASTM Standards, Vol. 04.02, 2012, 7 pp.
  Google Scholar

ASTM C1543 - 10a. Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding. Annual Book of ASTM Standards, Vol. 04.02, 2012, 4 pp.
  Google Scholar

ASTM D1141 – 98. Standard Practice for the Preparation of Substitute Ocean Water. Annual Book of ASTM Standards, Vol. 04.02, 2012, 3 pp.
  Google Scholar

Erdogdu E., Bremner T.W., Kondratova I.L. Accelerated testing of plain and epoxy-coated reinforcement in simulated seawater and chloride solutions, Cement and Concrete Research, Vol. 31 (2001) 861–867.
  Google Scholar

Fiertak M., Małolepszy J. Beton jako materiał kompozytowy podlegający wpływom czynników środowiskowych. Sympozjum Nauk. Techn. „Trwałość betonu”, Kraków 2005, s. 5-39.
  Google Scholar

Giergiczny Z. , Dąbrowska M. Korozja betonu. Przegląd metod badawczych. XII Sympozjum Nauk. Techn. “Reologia w Technologii Betonu. Gliwice 2010, s. 25-44.
  Google Scholar

Horszczaruk E., Brzozowski P., Rudnicki T. Urządzenie do badań betonów podwodnych w warunkach oddziaływania ciśnienia hydrostatycznego, Przegląd Budowlany, nr 6 (2012) 36-38.
  Google Scholar

Horszczaruk E., Brzozowski P. Wpływ ciśnienia hydrostatycznego na wytrzymałość na ściskanie betonów podwodnych. Zesz. Nauk. Polit. Rzeszowskiej, Nr 283, Budownictwo i Inżynieria Środowiska z 59 (2012), 197-204.
  Google Scholar

Horszczaruk E., Brzozowski P., Adamczewski G. Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Underwater Concrete. Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago 2013.
  Google Scholar

Horszczaruk E., Brzozowski P., Adamczewski G. Wpływ ciśnienia hydrostatycznego na rozwój wytrzymałości betonów cementowych układanych pod wodą, Inżynieria i Budownictwo, Nr 5 (2013), 263-266.
  Google Scholar

Montes P, Bremner T.W., Lister D.H. Influence of calcium nitrite inhibitor and crack width on corrosion of steel in high performance concrete subjected to a simulated marine environment, Cement and Concrete Composites, Vol. 26 (2004), 243–253.
  Google Scholar

NT Build 443 Concrete, hardened: Accelerate chloride penetration. NORDTEST. 1995, 5 pp.
  Google Scholar

NT Build 492 Concrete, Mortars and cement-based repair materials: Chloride migration coefficient from non-steady migration experiments. NORDTEST. 1999, 8 pp.
  Google Scholar

Safiuddin Md., Soudki K. A. Sealer and coating systems for the protection of concrete bridge structures. International Journal of the Physical Sciences Vol. 37 (2011), 8188-8199.
  Google Scholar


Published
2013-09-11

Cited by

Horszczaruk, E., Brzozowski, P. and Rucińska, T. (2013) “Chloride corrosion resistance of underwater repair concrete in terms of the cutting effects of hydrostatic pressure”, Budownictwo i Architektura, 12(3), pp. 161–168. doi: 10.35784/bud-arch.2028.

Authors

Elżbieta Horszczaruk 

Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-0840-5048

Authors

Piotr Brzozowski 

Department of Reinforced Concrete Structures and Concrete Technology; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-4146-9203

Authors

Teresa Rucińska 

Department of Roads, Bridges and Building Materials; Faculty of Civil Engineering and Architecture; West Pomeranian University of Technology Szczecin Poland
https://orcid.org/0000-0003-2550-2480

Statistics

Abstract views: 255
PDF downloads: 125


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.