The use of fractal geometry in determination of fracture toughness of metakaolinite modified concrete
Janusz Konkol
Department of Materials Engineering and Technology of Building; Faculty of Civil and Environmental Engineering; Rzeszow University of Technology (Poland)
https://orcid.org/0000-0002-2474-4958
Abstract
The aim of the paper is to present the results of experiments on concretes after 180 days of hardening with metakaolinite addition. Measurements of compressive strength fc, critical stress intensity factor KIcS and fractal dimension Dm were performed. The plan included nine measurement points. Water/binder ratios ranging from 0.35 to 0.54, and the metakaolinite additives in the amount ranging from 2.1 to 14.9 % relative to the mass of binder were used as independent variables. Statistically significant correlations were given. The proposed solutions can be used in designing the concrete with metakaolinite, which enables the prediction of KIcS after 180 days of hardening concrete with no need for destructive tests.
Keywords:
concrete, fracture toughness, fractal dimension, metakaoliniteReferences
Mandelbrot B.B. Les Objets Fractals: Forme, Hasard et Dimension, Flammarion, Paris, 1975.
Google Scholar
Mandelbrot B.B. Fractals. Form, chance and dimension. W.H. Freeman, San Francisco, 1977.
Google Scholar
Winslow D.N. The fractal nature of the surface of cement paste. Cem. Concr. Res. 15 (1985) 817-824.
DOI: https://doi.org/10.1016/0008-8846(85)90148-6
Google Scholar
Saouma V.E., Barton C.C. Fractals, fractures, and size effects in concrete. J. Eng. Mech. 120 (1994) 835-854.
Google Scholar
Prokopski G., Langier B. Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes. Cem. Concr. Res. 30 (2000) 1427-1433.
Google Scholar
Yan A., Wu K.-R., Zhang D., Yao W. Effect of fracture path on the fracture energy of high-strength concrete. Cem. Concr. Res. 31 (2001) 1601-1606.
Google Scholar
Issa M.A., Issa M.A., Islam Md.S, Chudnovsky A. Fractal dimension – a measure of fracture roughness and toughness of concrete. Eng. Fract. Mech. 70 (2003) 125-137.
Google Scholar
Prokopski G., Konkol J. The fractal analysis of the fracture surface of concretes made from different coarse aggregates. Computers and Concrete 2 (2005) 239-248.
Google Scholar
Carpinteri A., Spagnoli A., Vantadori S., Viappiani D. Influence of the crack morphology on the fatigue crack growth rate: A continuously-kinked crack model based on fractals. Eng. Fract. Mech. 75 (2008) 579–589.
Google Scholar
Ficker T. Fractal strength of cement gels and universal dimension of fracture surfaces. Theor. Appl. Fract. Mech. 50 (2008) 167–171.
Google Scholar
Zhang H., Wei D.M. Fractal effect and anisotropic constitutive model for concrete. Theor. Appl. Fract. Mech. 51 (2009) 167-173.
Google Scholar
Zhang H., Wei D.M. Fracture and damage behaviors of concrete in the fractal space. J. Mod. Phys. 1 (2010) 48-58.
Google Scholar
Zhang H., Wei D.M. Estimation of fracture toughness, driving force, and fracture energy for fractal cracks using the method of imaginary smooth crack. Eng. Fract. Mech. 77 (2010) 621-630.
Google Scholar
Konkol J., Prokopski G. Morfologia przełomu oraz odporność na pękanie betonów modyfikowanych dodatkiem popiołu fluidalnego lub metakaolinitu. Zeszyty Naukowe Politechniki Rzeszowskiej, Seria Budownictwo i Inżynieria Środowiska, z. 58, nr 3/11/III (2011) 321-330.
Google Scholar
Konkol J. Wykorzystanie parametrów fraktalnych i stereologicznych do opisu odporności na pękanie betonów modyfikowanych wybranymi dodatkami typu II. Zeszyty Naukowe Politechniki Rzeszowskiej, seria Budownictwo i Inżynieria Środowiska, z 59, nr 3/12/III (2012) 222-232.
Google Scholar
Brandt A.M., Prokopski G. On the fractal dimension of fracture surfaces of concrete elements. J. Mater. Sci. 28 (1993) 4762-4766.
Google Scholar
Czarnecki L., Garbacz A., Kurach J. On the characterization on polymer concrete fracture surface. Cem. Concr. Compos. 23 (2001) 399-409.
Google Scholar
Czarnecki L, Chmielewska B. Fracture and fractography of silane modified resin mortars. Int. J. Restor. Build. Monum. 9 (2003) 603–18
Google Scholar
Erdem S., Blankson M.A. Fractal-fracture analysis and characterization of impact-fractured surface in different types of concrete using digital image analysis and 3D nanomap laser profilometery. Constr. Build Mater. 40 (2013) 70-76.
Google Scholar
Wild S., Khabit J.M., Jones A., Relative strength pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 26 (1996) 1537–44.
Google Scholar
B.B. Sabir, S. Wild, J. Bai, Metakaolin and cacined clays as Pozzolans for concrete: a review. Cem. Concr. Compos. 23 (2001) 441–54.
DOI: https://doi.org/10.1016/S0958-9465(00)00092-5
Google Scholar
Jones T.R. Metakaolin as a pozzolanic addition to concrete, w Structure and Performance of Cements (red. J. Bensted, P. Barnes). Spoon Press, London, New York 2002.
Google Scholar
Poon C.S., Kou S.C., Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build Mater. 20 (2006) 858-865.
Google Scholar
Siddique R., Klaus J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 43 (2009) 392–400.
DOI: https://doi.org/10.1016/j.clay.2008.11.007
Google Scholar
Pavlíková M., Brtník T, Keppert M., Černý R. Wpływ metakaolinitu, jako częściowego zamiennika cementu, na właściwości zapraw wysoko-wartościowych. Cement Wapno Beton 9 (2009) 113-122.
Google Scholar
Ramezanianpour A.A., Jovein H.B. Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr. Build Mater. 30 (2012) 470–479.
Google Scholar
Madandoust R., Mousavi S.Y. Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr. Build Mater. 35 (2012) 752–760.
Google Scholar
Dvorkin L., Bezusyak A., Lushnikova N., Ribakov Y. Using mathematical modeling for design of self compacting high strength concrete with metakaolin admixture. Constr. Build Mater. 37 (2012) 851-64.
Google Scholar
Rashad A.M. Metakaolin as cementitious material: History, scours, production and composition –A comprehensive overview. Constr. Build Mater. 41 (2013) 303–318.
DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.001
Google Scholar
Prokopski G. Mechanika pękania betonów cementowych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2009.
Google Scholar
Determination of fracture parameters (KIcS and CTODc) of plain concrete using three-point bend test. RILEM Draft Recommendations, TC 89 - FMT Fracture Mechanics of Concrete Test Methods. Materials and Structures 23, 1990.
DOI: https://doi.org/10.1007/BF02472029
Google Scholar
Authors
Janusz KonkolDepartment of Materials Engineering and Technology of Building; Faculty of Civil and Environmental Engineering; Rzeszow University of Technology Poland
https://orcid.org/0000-0002-2474-4958
Statistics
Abstract views: 149PDF downloads: 104
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.