Mechanical performance of FRP-RC flexural members subjected to fire conditions
Kostiantyn Protchenko
k.protchenko@il.pw.edu.plFaculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; (Poland)
https://orcid.org/0000-0003-1357-2174
Elżbieta Szmigiera
Faculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; (Poland)
https://orcid.org/0000-0001-9084-2372
Marek Urbański
Faculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; (Poland)
https://orcid.org/0000-0002-3568-6888
Andrzej Garbacz
Faculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; (Poland)
https://orcid.org/0000-0002-5229-7884
Abstract
One of the main concerns that limit the widespread use of Fibre-Reinforced Polymers (FRP) bars as internal reinforcement for reinforced concrete (RC) structures is their relatively unexplored response to elevated temperatures. The behaviour of FRP reinforcement at elevated temperature as well as their post-fire behaviour can be different from conventional reinforcement and depends on the properties of the constituents of the bars. Therefore, the fire resistance of FRP-RC structures is an important issue that needs careful investigation before FRP reinforcement can be implemented in RC structures.
The experimental results for full-scale FRP-RC beams subjected to specific fire action were presented and discussed in this paper. The specimens were exposed to heat in the mid-section from below (tension zone) and from the sides. As one of the main aims was to examine the influence of different reinforcement configurations, the testing was made for concrete beams reinforced with three different types of FRP bars: (i) basalt-FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibres (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the rebars.
The present work describes the behaviour of FRP-RC beams exposed to fire conditions and simultaneous loading (50 % of their ultimate strength capacity at normal temperature) and unloaded beams were tested after the cooling phase in order to evaluate their residual resistance.
Present work shows that the type of FRP bars used has a direct influence on the outcomes and the way of destruction. The maximum ductility, the longest heating time of approximately 100 minutes, was obtained for beams reinforced with BFRP bars and attained deflections were corresponded to the value of 162 mm.
Supporting Agencies
Keywords:
Fibre-Reinforced Polymers (FRP) bars, Hybrid FRP bars, FRP-RC beams, Fire resistance of FRP, Fire resistance of FRP-RC membersReferences
Portnov G., Bakis C. E., Lackey E., Kulakov V., "FRP Reinforcing bars – designs and methods of manufacture (Review of Patents)", Mechanics of Composite Materials, vol. 49, no. 4, (2013), pp. 381-400. https://doi.org/10.1007/s11029-013-9355-1
DOI: https://doi.org/10.1007/s11029-013-9355-1
Google Scholar
Castro F., Protasio & Carino N., "Tensile and Nondestructive Testing of FRP Bars", Journal of Composites for Construction, vol. 2, no. 1, 1998, pp. 17-27. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(17)
DOI: https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(17)
Google Scholar
Palmieri A., Matthys S., and Tierens M. "Basalt fibres: Mechanical properties and applications for concrete structures." in Concrete solutions : proceedings of the international conference on Concrete Solutions. Taylor and Francis Group, 2009, pp.165-169.
Google Scholar
Garbacz A., Radomski W. A., Mossakowski P., "Alternatywne zbrojenie betonu kompozytami FRP – zagadnienie kompatybilności" [EN: Alternative reinforcement of concrete using FRP composites – compatibility issues], Mosty, no. 1, (2015), pp. 42-45.
Google Scholar
Elsayed T. A., Elhefnawy A. A., Eldaly A. A., Ghanem, G. M., "Hybrid fiber reinforced polymers rebars", Journal of Advanced Materials, vol. 43, 2011, pp. 65-75. https://doi.org/10.1163/092430410X547074
DOI: https://doi.org/10.1163/092430410X547074
Google Scholar
Kowalski R., Głowacki M. J., Abramowicz M., "Premature destruction of two-span RC beams exposed to high temperature caused by a redistribution of shear forces", Journal of Civil Engineering and Manufacturing, vol. 22, no. 8, 2016, pp. 1-9. https://doi.org/10.3846/13923730.2016.1144645
DOI: https://doi.org/10.3846/13923730.2016.1144645
Google Scholar
Kowalski R., Głowacki M. J., "On the experimental analysis of temperature influence on stiffness of reinforced concrete beams", Journal of Structural Fire Engineering, vol. 6, no. 1, 2015, pp. 49-57. https://doi.org/10.1260/2040-2317.6.1.49
DOI: https://doi.org/10.1260/2040-2317.6.1.49
Google Scholar
ACI. Guide for the design and construction of concrete reinforced with FRP Bars. ACI 440.1R-15. Farmington Hills, MI: American Concrete Institute, 2015.
Google Scholar
CSA. Design and construction of building structures with fibre-reinforced polymers. CAN/CSA S806-12, Canadian Standards Association, 2012, Reaffirmed in 2017, 206 pages.
Google Scholar
Nigro E., Cefarelli G., Bilotta A., Manfredi G., Cosenza E., "Fire resistance of concrete slabs reinforced with FRP bars part II: experimental results and numerical simulations on the thermal field", Composites Part B: Engineering, vol. 42, no. 6, 2011, pp. 1751-1763. https://doi.org/10.1016/j.compositesb.2011.02.026
DOI: https://doi.org/10.1016/j.compositesb.2011.02.026
Google Scholar
Nanni A., De Luca A., Jawaheri Zadeh H., Reinforced concrete with FRP bars: Mechanics and design. CRC Press, Boca Raton, FL, 2014.
DOI: https://doi.org/10.1201/b16669
Google Scholar
Abbasi A., Hogg P. J., "Fire testing of concrete beams with fibre reinforced plastic rebar", Composites Part A, vol. 37, 2006, pp.1142-1150.
DOI: https://doi.org/10.1016/j.compositesa.2005.05.029
Google Scholar
Hajiloo H., Green M. F., Noël M., Bénichou N., Sultan M., "Fire tests on full-scale FRP reinforced concrete slabs", Composite Structures, vol. 179, 2017, pp. 705-719. https://doi.org/10.1016/j.compstruct.2017.07.060
DOI: https://doi.org/10.1016/j.compstruct.2017.07.060
Google Scholar
Nigro E., Cefarelli G., Bilotta A., Manfredi G., Cosenza E., "Fire resistance of concrete slabs reinforced with FRP bars part I: Experimental investigations on the mechanical behavior", Composites Part B Engineering, 42 (6), (2011), pp. 1739-1750. https://doi.org/10.1016/j.compositesb.2011.02.025
DOI: https://doi.org/10.1016/j.compositesb.2011.02.025
Google Scholar
Kodur V. K. R., Bisby L. A., Foo S., "Thermal behaviour of fire-exposed concrete slabs reinforced with fibre reinforced polymer bars", ACI Structural Journal, vol. 102, no. 6, 2005, pp. 799-807.
DOI: https://doi.org/10.14359/14787
Google Scholar
Nigro E., Cefarelli G., Bilotta A., Manfredi G., Cosenza E., "Tests at high temperatures on concrete slabs reinforced with bent FRP bars", in Proc., 10th International symp on fiber reinforced polymer reinforcement for reinforced concrete structures, ACI SP-275, Farmington Hills Michigan, USA, 2011.
Google Scholar
Sadek A., El-Hawary M., El-Deeb A., "Fire Resistance Testing of Concrete Beams Reinforced by GFRP Rebars", European Journal of Scientific Resources, vol. 15, no. 2, 2006, pp. 190-200.
DOI: https://doi.org/10.2190/AF.15.2.d
Google Scholar
Protchenko K., Szmigiera E. D., Urbański M., Garbacz A., Narloch P. L., & Lesniak P., "State-of-the-Art on Fire Resistance Aspects of FRP Reinforcing Bars", IOP Conference Series: Materials Science and Engineering, vol. 661, 2019, pp. 1-8. http://doi.org/10.1088/1757-899X/661/1/012081
DOI: https://doi.org/10.1088/1757-899X/661/1/012081
Google Scholar
Barbero E.J., Introduction to composite materials design. 2nd ed., Taylor & Francis Group: Boca Raton, USA, 2011.
Google Scholar
Black T., Kosher R., "Non Metallic Materials: Plastic, Elastomers, Ceramics and Composites", in Materials and Processing in Manufacturing. 10th ed., John Wiley & Sons, USA, (2008), pp. 162-194.
Google Scholar
Voigt W., "Uber die beziehung zwischen den beiden elasticitatsconstanten isotroperkorper", Annals of Physics, vol. 274, no. 12, 1889, pp. 573-587.
DOI: https://doi.org/10.1002/andp.18892741206
Google Scholar
Ashton J. E., Halpin J. C., Petit P. H., Primer on composite materials: analysis. Technomic, Stamford Conn., 1969.
Google Scholar
Halpin J. C. "Stiffness and expansion estimates for oriented short fiber composites", Journal of Composite Materials, vol. 3, 1969, pp. 732-734. https://doi.org/10.1177/002199836900300419
DOI: https://doi.org/10.1177/002199836900300419
Google Scholar
ANSYS® Academic Research Mechanical, Release 16.2, Help System, Coupled Field Analysis Guide, ANSYS, Inc.
Google Scholar
Jesionowski T., Pilawka R., "Epoxy composites with silica crosslinked with 1-ethylimidazole" Polymers, vol. 11, no. 1, 2011, pp. 14-17.
Google Scholar
Baur J. W., Chen C., Justice R. S., Schaefer D. W., "Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties", Polymers, vol. 49, 2008, pp. 3805-3815.
DOI: https://doi.org/10.1016/j.polymer.2008.06.023
Google Scholar
Jesionowski T., Pilawka R., "Kompozycje epoksydowe z krzemionką”, Kompozyty, vol. 9, no. 2, 2009, pp. 112-116.
Google Scholar
Szmigiera E., Protchenko K., Urbański M., Garbacz A., "Mechanical Properties of Hybrid FRP Bars and Nano-Hybrid FRP Bars", Archives of Civil Engineering, vol. 65, no. 1, 2019, pp. 97-110. https://doi.org/10.2478/ace-2019-0007
DOI: https://doi.org/10.2478/ace-2019-0007
Google Scholar
Garbacz A., Szmigiera E. D., Protchenko K., Urbański M. "On Mechanical Characteristics of HFRP Bars with Various Types of Hybridization", in Intern. Congr. on Polym. in Con. (ICPIC 2018): Polym. for Res. and Sust. Con. Infr., 2018, pp. 653-658. http://dx.doi.org/10.1007/978-3-319-78175-4
DOI: https://doi.org/10.1007/978-3-319-78175-4
Google Scholar
Protchenko K., Dobosz J., Urbański M., Garbacz A., "Wpływ substytucji włókien bazaltowych przez włókna węglowe na właściwości mechaniczne prętów B/CFRP (HFRP)" [Influence of the substitution of basalt fibres by carbon fibres on the mechanical behavior of B/CFRP (HFRP) bars], Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, 63, 1/1, 2016, pp. 149-156. http://doi.prz.edu.pl/pl/pdf/biis/454
DOI: https://doi.org/10.7862/rb.2016.17
Google Scholar
Protchenko K., Szmigiera E.D., Urbański M., Garbacz A. "Development of Innovative HFRP Bars", MATEC Web of Conferences, vol. 196, 2018, pp. 1-6. http://doi.org/10.1051/matecconf/201819604087
DOI: https://doi.org/10.1051/matecconf/201819604087
Google Scholar
ISO 834-1 (1999), Fire Resistance Tests – Elements of Buildings Construction, Part-1 General Requirements, International Organization for Standardization, Switzerland.
Google Scholar
Authors
Kostiantyn Protchenkok.protchenko@il.pw.edu.pl
Faculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; Poland
https://orcid.org/0000-0003-1357-2174
Authors
Elżbieta SzmigieraFaculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; Poland
https://orcid.org/0000-0001-9084-2372
Authors
Marek UrbańskiFaculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; Poland
https://orcid.org/0000-0002-3568-6888
Authors
Andrzej GarbaczFaculty of Civil Engineering; Warsaw University of Technology; 16 Armii Ludowej av., 00-637 Warsaw; Poland
https://orcid.org/0000-0002-5229-7884
Statistics
Abstract views: 361PDF downloads: 158 PDF downloads: 53 PDF downloads: 49
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.