Ductility and internal forces redistribution in lightweight aggregate concrete beams


Lightweight Aggregate Concrete (LWAC) is typically defined as concrete having a density smaller than or equal to 2200kg/m3 and can be obtained by mixing natural or artificial lightweight aggregates. There is a general scepticism regarding the use of lightweight aggregate concrete (LWAC) for structural applications. This concern is attached to the more brittle material behaviour which leads to lower ductility.

This article presents a numerical parametric analysis of the behaviour of the reinforced LWAC cross-sections under the immediate load taking into account the density of the LWAC concrete, concrete strength and tensile reinforcement ratio.

Numerical analysis of  the beams was conducted in OpenSees, an open–source nonlinear finite element method framework. One-dimensional elements, with three degrees of freedom at each end, were used. Bending stiffness in the integration points was calculated based on the sectional moment – curvature relationship.

The analysis showed that there is a relationship between the ductility of the cross-sections made of lightweight concrete and its density class. It is associated with limited compressive strains and the brittle behavior of LWAC. The limited rotation capacity of the reinforced concrete sections made of LWAC also affects the ability of redistribution of internal forces in statically indeterminate beams


lightweight concrete; ductility; redistribution; beams

European Committee for Standardization. EN 1992-1-1 Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings. CEN, Brussels, 2004.

Øverli J. A., Jensen T. M., “Increasing ductility in heavily reinforced LWAC structures”, Engineering Structures, vol. 62-63, (15 March 2014), pp. 11-22.

Carmo N.F., Costa H., Simões T., Lourenço C., Andrade D., “Influence of both concrete strength and transverse confinement on bending behavior of reinforced LWAC beams”, Engineering Structures, vol. 48, (March 2013), pp. 329-341.

Dias-da-Costa D., Carmo R. N. F., Graça-e-Costa R., Valença J., Alfaiate J., “Longitudinal reinforcement ratio in lightweight aggregate concrete beams”, Engineering Structures, vol. 81, (15 December 2014), pp. 219-229.

Øverli Jan A., “Towards a better understanding of the ultimate behaviour of LWAC in compression and bending”, Engineering Structures, vol. 151, (15 November 2017), pp. 821-838. https://doi.org/10.1016/j.engstruct.2017.08.063

Liu, X., Wu, T., & Liu, Y., „Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete”, Construction and Building Materials, vol. 225, 2019, pp. 256-272. https://doi.org/10.1016/j.conbuildmat.2019.07.135

Naaman A.E., Jeong S.M., “Structural ductility of concrete beams prestressed with FRP tendons”, in 2nd Int. RILEM Symp. (FRPRXS-2), Non-Metric (FRP) Reinforcement for Concrete Structures. RILEM, Bagneux, France, 1995, pp. 379-386.

Czkwianianc A., Kamińska M. E., „Metoda nieliniowej analizy żelbetowych elementów prętowych”, Studia z zakresu inżynierii, nr 36 (Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland, 1993).

Mander J. B., Chang G., “Seismic energy based fatigue damage analysis of bridge columns: Part I – evaluation of seismic capacity”, Technical Report 94-0006, NCEER, 1994.

Maekawa K., Dhakal P. R., “Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling”, Engineering Structures, vol. 24, 2002, pp. 1383-1396. https://doi.org/10.1016/S0141-0296(02)00080-9

The Open System for Earthquake Engineering Simulation Manual, Berkeley University of California, Available: https://opensees.berkeley.edu/wiki/index.php/OpenSees_User [Accessed: 01 February 2020]

Published : 2020-11-02

Waśniewski, T. and Kołodziejczyk, E. (2020) “Ductility and internal forces redistribution in lightweight aggregate concrete beams”, Budownictwo i Architektura, 19(4), pp. 089-099. doi: 10.35784/bud-arch.2124.

Tomasz Waśniewski  tomasz.wasniewski@p.lodz.pl
Department of Concrete Structures; Faculty of Civil Engineering, Architecture and Environmental Engineering; Lodz University of Technology; 6 Politechniki Avenue, 90-924 Łódź, Poland  Poland
Ewelina Kołodziejczyk 
Department of Concrete Structures; Faculty of Civil Engineering, Architecture and Environmental Engineering; Lodz University of Technology; 6 Politechniki Avenue, 90-924 Lodz;  Poland

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.