Pure torsion problem in tensor notation
Article Sidebar
Open full text
Issue Vol. 18 No. 1 (2019)
-
Research of the collapsibility of the European loess – review
Agnieszka Lal005-010
-
The concept of light and color as a key element of experiencing ‘feeling architecture’
Agnieszka Chęć-Małyszek011-021
-
Increasing the energy efficiency of dwelling houses: case study of residential quarter in Upper Silesia, Poland
Anna Ostańska023-032
-
Stigmergic behaviour and nodal places in residential areas: Case of post-socialist city Kharkiv in Ukraine
Oksana Chabanyuk, Miguel Fonseca033-047
-
Economical aspects concerning quality control of concrete
Izabela Skrzypczak, Marta Słowik049-056
-
Pure torsion problem in tensor notation
Sławomir Karaś057-069
-
Physical modeling of a fire with the use of the Froude number
Mateusz Zimny071-080
-
An analysis of the resistance of an extended end-plate beam-to-beam connection subjected to tension in fire conditions
Alina Słowikowska, Łukasz Polus081-088
Archives
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
-
Vol. 18 No. 4
2020-04-23 8
-
Vol. 18 No. 3
2020-01-24 8
-
Vol. 18 No. 2
2019-11-20 8
-
Vol. 18 No. 1
2019-09-30 8
-
Vol. 17 No. 4
2019-10-10 16
-
Vol. 17 No. 3
2019-10-10 15
-
Vol. 17 No. 2
2019-10-10 16
-
Vol. 17 No. 1
2019-10-10 21
-
Vol. 16 No. 4
2019-10-14 14
-
Vol. 16 No. 3
2019-10-14 15
-
Vol. 16 No. 2
2019-10-14 12
-
Vol. 16 No. 1
2019-10-15 20
Main Article Content
DOI
Authors
Abstract
The paper examines the application of the tensor calculus to the classic problem of the pure torsion of prismatic rods. The introduction contains a short description of the reference frames, base vectors, contravariant and covariant vector coordinates when applying the Einstein summation convention. Torsion formulas were derived according to Coulomb’s and Saint-Venant’s theories, while, as a link between the theories, so-called Navier’s error was discussed. Groups of the elasticity theory equations were used.
Keywords:
References
Green A.E., Zerna W. Theoretical elasticity. Oxford, Clarendon Press, 1968, pp. 457.
Dullemond K., Peeters K. Introduction to tensor calculus. 1991-2010. www.ita.uni-heidelberg.de /~dullemond/lectures/tensor/tensor.pdf; pp. 53.
Gurtin M.E., Sternberg E. Linear theory of elasticity, In: Truesdell, C., Ed., Handbuch der Physik, Vol. VIa/2, Springer-Verlag, Berlin, pp. 296.
Sokolnikoff I.S. Mathematical theory of elasticity. McGraw-Hill, 1956, pp. 476.
Kaliski S. Pewne problemy brzegowe dynamicznej teorii sprężystości i ciał niesprężystych; (Certain boundary problems of the dynamic theory of elasticity and inelastic bodies). Warszawa, WAT, 1957. pp. 305.
Kurrer K-E. The history of the theory of structures: from arch analysis to computational mechanics, Ernst & Sohn Verlag, 2008, pp 848; [04.07.2019]. https://doi.org/10.1017/S000192400008756X
Fung Y.C. Foundation of solid mechanics, Prentice-Hall, 1965, pp. 525.
Govindaraju L., Sitharam T.G., Applied elasticity for engineers, I K International Publishing House Pvt. Ltd, New Delhi, 2016, pp. 256; https://www.bookdepository.com/Elasticity-for-Engineers-T-G-Sitharam/9789385909344 ; [20.05.2019].
Mase G.T., Smelser R., Mase G.E., Continuum mechanics for engineers, 3rd Edit., CRC Press, Taylor & Francis Group, 2009, p. 370. https://www.academia.edu/15548859/Continuum_Mechanics_for_Engineers_ Mase_3rd_Edition?auto =download ; [28.05.2019].
Romano G., Barretta A., Barretta R. On torsion and shear of Saint-Venant beams, European Journal of Mechanics A/Solids 35, 2012, pp. 47-60.
Raniecki B., Nguyen H.V., Mechanics of isotropic elastic-plastic flow in pressure-sensitive damaging bodies under finite strains, ZAMM, Vol.90, No.9, 2010, pp. 682-700. https://doi.org/10.1002/zamm.200900398
Article Details
Abstract views: 440
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
