The influence of the wind structure definition in the standard k-ε model of turbulence on the distribution of pressure coefficient on the façades of the prism
Article Sidebar
Open full text
Issue Vol. 10 No. 1 (2012)
-
Physical and mechanical properties keramsite obtained with added glauconite
Małgorzata Franus005-014
-
Experimental testing of high performance fibre reinforced concrete deep beams
Piotr Smarzewski, Justyna Poręba, Agata Rentflejsz015-026
-
Analysis of limit state of reinforced high performance hybrid fiber concrete deep beams with openings
Piotr Smarzewski, Renata Spaczyńska027-036
-
The analysis of deformation states high strength fibre-reinforced concrete plates in flexural
Piotr Smarzewski, Mariusz Szwaj, Andrzej Szewczak037-052
-
The application example of the sensitivity analysis of the solution to coefficients of the k-ε model
Ewa Błazik-Borowa053-068
-
Wind structure influence on surface pressures of rectangular cylinders of cross-section dimensions 10 cm x 20 cm
Tomasz Lipecki, Ewa Błazik-Borowa, Jarosław Bęc069-080
-
Wind structure influence on pressure coefficient distribution on the surface of circular cylinder of the diameter 20 cm
Tomasz Lipecki, Jarosław Bęc, Ewa Błazik-Borowa081-092
-
The influence of the wind structure definition in the standard k-ε model of turbulence on the distribution of pressure coefficient on the façades of the prism
Paulina Jamińska093-104
-
The equations of motion of the main structure with attached multiple tuned mass dampers
Piotr Wielgos105-118
-
Solution of Extended Kelvin-Voigt Model
Sławomir Karaś119-130
-
Traffic forecasting on national roads
Jerzy Kukiełka131-144
-
Present methods of reconstruction of road bridges – examples of solutions
Krzysztof Śledziewski145-156
Archives
-
Vol. 13 No. 4
2020-06-24 48
-
Vol. 13 No. 3
2020-06-24 43
-
Vol. 13 No. 2
2020-07-15 43
-
Vol. 13 No. 1
2020-07-15 30
-
Vol. 12 No. 4
2020-09-04 24
-
Vol. 12 No. 3
2020-09-04 35
-
Vol. 12 No. 2
2020-09-04 37
-
Vol. 12 No. 1
2020-09-04 37
-
Vol. 11 No. 2
2020-12-02 11
-
Vol. 10 No. 1
2020-12-02 12
-
Vol. 9 No. 2
2020-12-02 11
-
Vol. 8 No. 1
2020-12-02 9
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
Main Article Content
DOI
Authors
Abstract
The paper deals with the influence of the definition of turbulence kinetic energy k and dissipation of turbulence kinetic energy ε on wind pressure coefficient distribution on walls of rectangular model. The investigation includes computer simulations for the four cases of boundary conditions, the most common in the literature. In some analysed cases, the wind structure characteristics used in computations were derived from experimental studies performed in the wind tunnel. The results in the form of pressure coefficients were analyzed on the basis of their relevance to the use in the field of wind engineering. All calculations were performed in ANSYS FLUENT with use of standard k-ε model. The 3D model of the flow around the prism was considered in calculations.
Keywords:
References
Błazik-Borowa E., Problemy związane ze stosowaniem modelu turbulencji k-? wyznaczania parametrów opływu budynków, Wydawnictwo Politechniki Lubelskiej, 2008.
Easeom G., Improved Turbulence Models for computational Wind Engineering, PhD Thesis, Nottingham, 2000.
Launder B.E., Spalding D.B., Lectures in Mathematical Models of Turbulence, Academic Press, Londyn 1972.
Richards P.J., Hoxey R.P., Appropriate boundary conditions for computational wind engineering model using the k-? turbulence model, Journal of Wind Engineering and Industrial Aerodynamics 46&47 (1993) 145-153. DOI: https://doi.org/10.1016/0167-6105(93)90124-7
Blocken B., Stathopoulos T., Carmeliet J., CFD simulation of the atmospheric boundary layer: wall function problems, Atmospheric Environment 41 (2007) 238-252. DOI: https://doi.org/10.1016/j.atmosenv.2006.08.019
Franke, J., Hellsten, A., Schlünzen, H. and Carissimo, B. (Eds.) Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Office, Brussels 2007.
Norris S.E., Richards P.J., Appropriate boundary conditions for computational wind engineering models revisited, The fifth International Symposium on Computational Wind Engineering, 2010. DOI: https://doi.org/10.1016/j.jweia.2010.12.008
Tominaga Y., Mochida A., Yoshie R., Kataoka H., Nozu T., Yoshikawa M., Shirasawa T., AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1749-1761. DOI: https://doi.org/10.1016/j.jweia.2008.02.058
Zhang J., Yang Q., Li Q.S., Application of nonlinear eddy viscosity model in simulations of flows over bluff body, BBAA7 2012.
Bęc J., Lipecki T., Błazik-Borowa E., Szulej J., Badania struktury przepływu w tunelu aerodynamicznym Laboratorium Inżynierii Wiatrowej Politechniki Krakowskiej, Materiały XIII Konferencji Fizyki Budowli w Teorii i Praktyce, Łódź 2011.
Blocken B., Carmeliet J., Stathopoulos T., CFD evaluation of wind speed conditions in passages between parallel buildings – effect of wall-function roughness modifications for the atmospheric boundary layer flow, Journal of Wind Engineering and Industrial Aerodynamics 95, 2007. DOI: https://doi.org/10.1016/j.susc.2007.01.031
Yoshie R., Mochida A., Tominaga Y., Kataoka H., Harimoto K., Nozu T., Shirasawa T., Cooperative Project for CFD prediction of pedestrian wind environment In the Architectural Institute of Japan, Journal of Wind Engineering and Industrial Aerodynamics 95, 2007. DOI: https://doi.org/10.1016/j.jweia.2007.02.023
Article Details
Abstract views: 281
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
