Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending.
Article Sidebar
Open full text
Issue Vol. 1 No. 1 (2007)
-
Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending.
Grzegorz Golewski005-016
-
Building compartment surface layer with specific properties of radiation absorption and transmission.
Magdalena Grudzińska017-044
-
Durability of mineral-cement-emulsion mixtures bases (MCEM).
Jerzy Kukiełka045-056
-
Mechanical characteristics of Asphalt-Cement Concrete foundations (ACC).
Marzena Bajak057-086
-
The interference galloping of two circular cylinders with equal diameters.
Ewa Błazik-Borowa087-102
-
Aerodynamics of guyed masts
Jarosław Bęc103-118
-
Vortex excitation of tower-like structures of circular cross-sections.
Tomasz Lipecki119-143
Archives
-
Vol. 9 No. 2
2020-12-02 11
-
Vol. 8 No. 1
2020-12-02 9
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
-
Vol. 5 No. 2
2020-11-02 7
-
Vol. 4 No. 1
2020-11-02 9
-
Vol. 3 No. 2
2020-11-02 10
-
Vol. 2 No. 1
2020-11-02 9
-
Vol. 1 No. 1
2020-11-02 7
Main Article Content
DOI
Authors
Abstract
The analysis of concrete behaviour taking into account fracture mechanics method makes it possible to describe the origin and development of the damages occurring in it, which is impossible in case of using global strength characteristics of composite. In the work the experiment results were presented regarding the determination of the influence of grain-size distribution of coarse aggregate on the crack mechanics parameters of limestone concretes as defined according to the I mode of crack propagation at bending. Two types of optimal composition of grains were used with Dmax up to 8 and up to 16 mm. During the experiments the basic parameters of fracture mechanics were determined: critical value of stress intensity factors: : and KIc, fracture energy GF, critical crack tip opening displacement CTODc and unit work of failure JIc. During the fracture toughness tests the method of loading samples based on RILEM recommendations was used. For basic experiments six beams with one initial crack were used. In the course of the experiments carried out, two dependencies were recorded for each sample: load – displacement of crack outlet opening and load - displacement of the point of applied force. In the course of the tests carried out it was found out that the higher fracture toughness was characteristic of concretes with the grain - size distribution up to 16 mm. The results presented in the work can be used in designing concretes in order to obtain materials characterized by the minimum number of initial defects which, thanks to increased fracture toughness, can increase to the reliability of construction work.
Keywords:
References
Kasperkiewicz J., O strukturze wewnętrznej kompozytów betonopodobnych w: Zagadnienia mechaniki materiałów i konstrukcji kompozytowych, red. W. Marks, S. Owczarek, Wydawnictwo Politechniki Lubelskiej, Lublin, 1986, 43-137.
Bazant Z.P., Concrete fracture models: testing and practice, Engineering Fracture Mechanics, vol. 69, no. 2, 2002, 165-205. DOI: https://doi.org/10.1016/S0013-7944(01)00084-4
Peng J., Wu Z., Zhao G., Fractal analysis of fracture in concrete, Theoretical and Applied Fracture Mechanics, vol. 27, no. 2, 1997, 135-140. DOI: https://doi.org/10.1016/S0167-8442(97)00015-3
Golewski G., Sadowski T., Analiza uszkodzeń betonów na mineralnych kruszywach naturalnych i łamanych z wykorzystaniem metod mikroskopii skaningowej, Inżynieria Materiałowa, nr 1, 2007, 33-38.
Golewski G., Sadowski T., Analiza kruchych uszkodzeń w kompozytach betonowych, Czasopismo techniczne, seria Budownictwo, nr. 1-B/2007, 55-61.
Kołodziejczyk U., Kraiński A., Rozpoznawanie skał i budowy geologicznej, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2004.
Piasta J., Technologia betonów z kruszyw łamanych, Arkady, Warszawa, 1974.
Piasta J., Piasta W.G., Rodzaje i znaczenie kruszywa w betonie, XVII Ogólnopolska Konferencja Warsztaty Pracy Projektanta Konstrukcji, Ustroń 2002, s. 279-327.
Neville A.M., Właściwości betonu, Polski Cement, Kraków 2000.
Brandt A.M., Burakiewicz A., Kajfasz S., Kasperkiewicz J., Kowalczyk R., Pietrzykowski J., Kompozyty betonowe - ich struktura i własności mechaniczne. w: Własności mechaniczne i struktura kompozytów betonowych, PAN, Ossolineum, Wrocław 1974, 9-273.
Prokopski G., Badanie wpływu warstwy stykowej kruszywo-zaprawa na odporność betonów na pękanie, Archiwum Inżynierii Lądowej, z. 3-4, 1989, 349-372.
Prokopski G., Halbiniak J., Interfacial transition zone in cementitious materials, Cement and Concrete Research, vol. 30, 2000, 579-583. DOI: https://doi.org/10.1016/S0008-8846(00)00210-6
Van Mier J.G.M., Fracture processes of concrete: assessment of material parameters for fracture models, CRC Press Boca Raton, New York, Londyn, Tokyo, 2000.
Piasta W.G., Korozja siarczanowa betonu pod obciążeniem długotrwałym, Monografie, studia rozprawy, Politechnika Świętokrzyska, Kielce 2000.
Piasta W.G., Sawicz Z., Goprowski G., Trwałość obciążonego betonu w warunkach agresywności chemicznej, Inżynieria i Budownictwo, nr 6, 1996, 368-369.
Brandt A.M., Zastosowanie doświadczalnej mechaniki zniszczenia do kompozytów o matrycach cementowych, w: Mechanika kompozytów betonopodobnych, PAN – Ossollineum, 1983, 449-501.
Golewski G., Sadowski T., Parametry mechaniki pękania betonów określane na podstawie badań doświadczalnych według I modelu pękania, Przegląd Budowlany, nr 7-8, 2005, 28-35.
PN-EN 206-1:2003 Beton. Część 1: Wymagania, właściwości, produkcja i zgodność.
DIN 4226-1: Zuschlag fur Beton; Zuschlag mit dichtem Gefuge, Begriffe, Bezeichnung und Anforderungen.
Determination of fracture parameters (KIc and CTODc) of plan concrete using three-point bend tests, RILEM Draft Recommendations, TC 89-FMT Fracture Mechanics of Concrete Test Methods, Materials and Structures, 23, 1990, 457-460. DOI: https://doi.org/10.1007/BF02472029
Golewski G., Mikromechanika uszkodzeń betonów w aspekcie badań odporności na pękanie, Zeszyty Naukowe Politechniki Śląskiej nr 1695, Budownictwo nr 104, 2005, 107-114.
ASTM E 1820-01: Test Method for Measurement for Fracture Testing. American Society for Testing and Materials, Philadelphia, 1996.
Lott G.L., Kesler C.E., Crack propagation in plane concrete, T.A. M. Report, no. 648, 1974.
RILEM Draft Recommendations, 50 – FMC Committee Fracture Mechanics of Concrete: Determination of the fracture energy of mortar and concrete by means of three – point bend tests on notched beams, vol. 18, no. 106.
Słowik M., Sposoby określania energii pękania w elementach z betonu, Inżynieria i Budownictwo, nr 8, 1996, 466-468.
CEB - FIP Model Code 1990, Bulletin d’information, no. 196.
Perdikaris P.C., Romeo A., Size effect on fracture energy of concrete and stability issues in three-point bending fracture toughness testing, ACI Materials Journal, 92, 5, 1995, 483-496. DOI: https://doi.org/10.14359/900
Sadowski T., Golewski G., Effect of aggregate kind and graining on modelling of plain concrete under compression, Computational Materials Science, (2008) in press; doi: 10.1016/j.commatsci.2007.07.037 DOI: https://doi.org/10.1016/j.commatsci.2007.07.037
Article Details
Abstract views: 306
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
