Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending.
Grzegorz Golewski
Department of Civil Engineering Structures; Faculty of Civil Engineering and Architecture; Lublin University of Technology (Poland)
https://orcid.org/0000-0001-9325-666X
Abstract
The analysis of concrete behaviour taking into account fracture mechanics method makes it possible to describe the origin and development of the damages occurring in it, which is impossible in case of using global strength characteristics of composite. In the work the experiment results were presented regarding the determination of the influence of grain-size distribution of coarse aggregate on the crack mechanics parameters of limestone concretes as defined according to the I mode of crack propagation at bending. Two types of optimal composition of grains were used with Dmax up to 8 and up to 16 mm. During the experiments the basic parameters of fracture mechanics were determined: critical value of stress intensity factors: : and KIc, fracture energy GF, critical crack tip opening displacement CTODc and unit work of failure JIc. During the fracture toughness tests the method of loading samples based on RILEM recommendations was used. For basic experiments six beams with one initial crack were used. In the course of the experiments carried out, two dependencies were recorded for each sample: load – displacement of crack outlet opening and load - displacement of the point of applied force. In the course of the tests carried out it was found out that the higher fracture toughness was characteristic of concretes with the grain - size distribution up to 16 mm. The results presented in the work can be used in designing concretes in order to obtain materials characterized by the minimum number of initial defects which, thanks to increased fracture toughness, can increase to the reliability of construction work.
Keywords:
Concrete composite, limestone aggregate, graining, brittleness, fracture mechanicsReferences
Kasperkiewicz J., O strukturze wewnętrznej kompozytów betonopodobnych w: Zagadnienia mechaniki materiałów i konstrukcji kompozytowych, red. W. Marks, S. Owczarek, Wydawnictwo Politechniki Lubelskiej, Lublin, 1986, 43-137.
Google Scholar
Bazant Z.P., Concrete fracture models: testing and practice, Engineering Fracture Mechanics, vol. 69, no. 2, 2002, 165-205.
DOI: https://doi.org/10.1016/S0013-7944(01)00084-4
Google Scholar
Peng J., Wu Z., Zhao G., Fractal analysis of fracture in concrete, Theoretical and Applied Fracture Mechanics, vol. 27, no. 2, 1997, 135-140.
DOI: https://doi.org/10.1016/S0167-8442(97)00015-3
Google Scholar
Golewski G., Sadowski T., Analiza uszkodzeń betonów na mineralnych kruszywach naturalnych i łamanych z wykorzystaniem metod mikroskopii skaningowej, Inżynieria Materiałowa, nr 1, 2007, 33-38.
Google Scholar
Golewski G., Sadowski T., Analiza kruchych uszkodzeń w kompozytach betonowych, Czasopismo techniczne, seria Budownictwo, nr. 1-B/2007, 55-61.
Google Scholar
Kołodziejczyk U., Kraiński A., Rozpoznawanie skał i budowy geologicznej, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra 2004.
Google Scholar
Piasta J., Technologia betonów z kruszyw łamanych, Arkady, Warszawa, 1974.
Google Scholar
Piasta J., Piasta W.G., Rodzaje i znaczenie kruszywa w betonie, XVII Ogólnopolska Konferencja Warsztaty Pracy Projektanta Konstrukcji, Ustroń 2002, s. 279-327.
Google Scholar
Neville A.M., Właściwości betonu, Polski Cement, Kraków 2000.
Google Scholar
Brandt A.M., Burakiewicz A., Kajfasz S., Kasperkiewicz J., Kowalczyk R., Pietrzykowski J., Kompozyty betonowe - ich struktura i własności mechaniczne. w: Własności mechaniczne i struktura kompozytów betonowych, PAN, Ossolineum, Wrocław 1974, 9-273.
Google Scholar
Prokopski G., Badanie wpływu warstwy stykowej kruszywo-zaprawa na odporność betonów na pękanie, Archiwum Inżynierii Lądowej, z. 3-4, 1989, 349-372.
Google Scholar
Prokopski G., Halbiniak J., Interfacial transition zone in cementitious materials, Cement and Concrete Research, vol. 30, 2000, 579-583.
DOI: https://doi.org/10.1016/S0008-8846(00)00210-6
Google Scholar
Van Mier J.G.M., Fracture processes of concrete: assessment of material parameters for fracture models, CRC Press Boca Raton, New York, Londyn, Tokyo, 2000.
Google Scholar
Piasta W.G., Korozja siarczanowa betonu pod obciążeniem długotrwałym, Monografie, studia rozprawy, Politechnika Świętokrzyska, Kielce 2000.
Google Scholar
Piasta W.G., Sawicz Z., Goprowski G., Trwałość obciążonego betonu w warunkach agresywności chemicznej, Inżynieria i Budownictwo, nr 6, 1996, 368-369.
Google Scholar
Brandt A.M., Zastosowanie doświadczalnej mechaniki zniszczenia do kompozytów o matrycach cementowych, w: Mechanika kompozytów betonopodobnych, PAN – Ossollineum, 1983, 449-501.
Google Scholar
Golewski G., Sadowski T., Parametry mechaniki pękania betonów określane na podstawie badań doświadczalnych według I modelu pękania, Przegląd Budowlany, nr 7-8, 2005, 28-35.
Google Scholar
PN-EN 206-1:2003 Beton. Część 1: Wymagania, właściwości, produkcja i zgodność.
Google Scholar
DIN 4226-1: Zuschlag fur Beton; Zuschlag mit dichtem Gefuge, Begriffe, Bezeichnung und Anforderungen.
Google Scholar
Determination of fracture parameters (KIc and CTODc) of plan concrete using three-point bend tests, RILEM Draft Recommendations, TC 89-FMT Fracture Mechanics of Concrete Test Methods, Materials and Structures, 23, 1990, 457-460.
DOI: https://doi.org/10.1007/BF02472029
Google Scholar
Golewski G., Mikromechanika uszkodzeń betonów w aspekcie badań odporności na pękanie, Zeszyty Naukowe Politechniki Śląskiej nr 1695, Budownictwo nr 104, 2005, 107-114.
Google Scholar
ASTM E 1820-01: Test Method for Measurement for Fracture Testing. American Society for Testing and Materials, Philadelphia, 1996.
Google Scholar
Lott G.L., Kesler C.E., Crack propagation in plane concrete, T.A. M. Report, no. 648, 1974.
Google Scholar
RILEM Draft Recommendations, 50 – FMC Committee Fracture Mechanics of Concrete: Determination of the fracture energy of mortar and concrete by means of three – point bend tests on notched beams, vol. 18, no. 106.
Google Scholar
Słowik M., Sposoby określania energii pękania w elementach z betonu, Inżynieria i Budownictwo, nr 8, 1996, 466-468.
Google Scholar
CEB - FIP Model Code 1990, Bulletin d’information, no. 196.
Google Scholar
Perdikaris P.C., Romeo A., Size effect on fracture energy of concrete and stability issues in three-point bending fracture toughness testing, ACI Materials Journal, 92, 5, 1995, 483-496.
DOI: https://doi.org/10.14359/900
Google Scholar
Sadowski T., Golewski G., Effect of aggregate kind and graining on modelling of plain concrete under compression, Computational Materials Science, (2008) in press; doi: 10.1016/j.commatsci.2007.07.037
DOI: https://doi.org/10.1016/j.commatsci.2007.07.037
Google Scholar
Authors
Grzegorz GolewskiDepartment of Civil Engineering Structures; Faculty of Civil Engineering and Architecture; Lublin University of Technology Poland
https://orcid.org/0000-0001-9325-666X
Statistics
Abstract views: 228PDF downloads: 108
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.