Vortex excitation of tower-like structures of circular cross-sections.
Article Sidebar
Open full text
Issue Vol. 1 No. 1 (2007)
-
Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending.
Grzegorz Golewski005-016
-
Building compartment surface layer with specific properties of radiation absorption and transmission.
Magdalena Grudzińska017-044
-
Durability of mineral-cement-emulsion mixtures bases (MCEM).
Jerzy Kukiełka045-056
-
Mechanical characteristics of Asphalt-Cement Concrete foundations (ACC).
Marzena Bajak057-086
-
The interference galloping of two circular cylinders with equal diameters.
Ewa Błazik-Borowa087-102
-
Aerodynamics of guyed masts
Jarosław Bęc103-118
-
Vortex excitation of tower-like structures of circular cross-sections.
Tomasz Lipecki119-143
Archives
-
Vol. 9 No. 2
2020-12-02 11
-
Vol. 8 No. 1
2020-12-02 9
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
-
Vol. 5 No. 2
2020-11-02 7
-
Vol. 4 No. 1
2020-11-02 9
-
Vol. 3 No. 2
2020-11-02 10
-
Vol. 2 No. 1
2020-11-02 9
-
Vol. 1 No. 1
2020-11-02 7
Main Article Content
DOI
Authors
Abstract
The paper deals with the description of vortex excitation phenomenon in cases of structures of circular cross-sections. Other sources of across-wind load (fluctuations of wind direction or aerodynamic interference) are neglected in this paper. The main aim of this paper is presentation of a theoretical background of a new mathematical model of critical vortex excitation of slender structures of circular cross-sections. All calculations have been performed using own computer programme according to numerical implementation of mathematical model. That programme allows to simulate across-wind action caused by vortices as well as a lateral response of the analysed structure. Simulations of vortex excitation are performed in real time on the basis of lateral displacements. Sensitivity analysis of results has been carried out for the purpose of determination of the importance of particular parameters describing mathematical model for lateral displacement of analysed structures. Final results concerning maximum lateral top displacements of the structures obtained according to the new model have been compared with available full-scale data for steel and concrete chimneys. Maximum lateral top displacements have been also compared with results obtained according to procedures included in codes and standards. Moreover, additional aspects of vortex excitation are presented: the influence of corrosion of steel chimneys and the influence of feedbacks between vortex shedding and lateral vibrations on lateral response of analysed structures.
Keywords:
References
Flaga A., Nieliniowy, amplitudowo zależny, samoograniczony model zjawiska synchronizacji częstotliwości przy wzbudzeniu wirowym, Księga Jubileuszowa Profesora Z. Kączkowskiego, Warszawa, 1996, pp.: 141-149 (in Polish).
Flaga A., Wind vortex-induced excitation and vibration of slender structures. Single structure of circular cross-section normal to flow, Monograph 202, Cracow, Poland, 1996.
Flaga A., Nonlinear amplitude dependent self-limiting model of lock-in phenomenon at vortex excitation, J. Wind Eng. Ind. Aerodyn., 69-71 (1997) 331-340. DOI: https://doi.org/10.1016/S0167-6105(97)00166-9
Flaga A., Universal formulae for power spectral density of vortex-induced excitation of elastically supported circular cylinder, 4th BBAA, Bochum, Germany, 2000, pp.: 625-629.
Lipecki T., Vortex excitation of tower-like structures of circular cross-sections, Thesis, Lublin, Poland, 2006 (in Polish). DOI: https://doi.org/10.35784/bud-arch.2305
Flaga A., Lipecki T., Comparative study of vortex excitation for various tower-like structures, Proc. 10th ICWE, Copenhagen, Dania, 1999, pp.: 423-430.
Flaga A., Lipecki T., Simulation of across-wind action caused by vortex excitation, Proc. 4th EACWE, Praha, Czech Republik, 2005, pp.:112-113.
Flaga A., Lipecki T., Implementacja numeryczna własnego modelu wzbudzenia wirowego, Inżynieria i Budownictwo 8 (2005) 428-431 (in Polish).
Flaga A., Lipecki T., Wzbudzenie wirowe konstrukcji wieżowych o przekroju kołowym zmiennym wzdłuż wysokości, Proc. 3rd Symp. Env. Effects on Building and People, Zwierzyniec, Poland, 2001, pp.: 45-54.
Flaga A., Lipecki T., Generation of vortex excitation of slender structures. Proc. 4th Symp. Env. Effects on Building and People, Susiec, Poland, 2004, pp.: 15-18.
Lipecki T., Flaga A., Influence of corrosion of steel chimneys on its response under vortex excitation, Proc. 12th ICWE, Cairns, Australia, 2007, pp.: 983-990.
Flaga A., Błazik-Borowa E., Podgórski J., Aerodynamics of slender structures and bar-cable structures, Monograph, Lublin Technical University, 2004 (in Polish).
Flaga A, Lipecki T., Special aspects of slender structures vortex excitation, in Monograph: Environmental effects on building, structures, materials and people, Lublin, 2007, 291-302.
Lipecki T., The Use of Sensitivity Analysis in Identification of Vortex Excitation Parameters, in Monograph: Environmental effects on building, structures, materials and people, Lublin, 2007, pp.: 11-22.
ESDU 85038, Circular-cylindrical structures: dynamic response to vortex shedding, Part I: calculation procedures and derivation, London, ESDU Int. Ltd, 1990.
ESDU 80025, Mean forces, pressures and flow field velocities for circular cylindrical structures: single cylinder with two-dimensional flow, London, ESDU Int. Ltd, 1986.
ESDU 82026, Strong winds in the atmospheric boundary layer, Part 1: mean – hourly wind speed, London, ESDU Int. Ltd, 1982.
Novak M., Tanaka H., Pressure correlations on a vibrating cylinder, Proc. 4th Int. Conf. Wind Effects on Building and Structures, Heathrow 1975, Cambridge University Press, London, 1977, pp.: 227-232.
Howell J.F., Novak M., Vortex shedding from circular cylinders in turbulent flow, Proc. 5th ICWE, USA 1979, Pergamon, Oxford, 1980, pp.: 619-629. DOI: https://doi.org/10.1016/B978-1-4832-8367-8.50061-9
Vickery B.J., Basu R.J., Simplified approaches to the evaluation of the across-wind response of chimneys, Proc. of the 6th ICWE., Gold Coast, Australia, J. Ind. Aerodyn., 14 (1983) 153-166. DOI: https://doi.org/10.1016/0167-6105(83)90019-3
Vickery B.J., Wind loads on towers and chimneys, Proc. of Int. Symp.: Experimental determination of wind loads on civil engineering structures, 1990, New Delhi, pp.: 87-99.
Vickery B.J., The response of chimneys and tower like structures to wind loading. A state of the art in wind engineering, Wiley Eastern Limited, 1995, pp.: 205-233.
Ruscheweyh H., Codification of vortex excited vibrations, Recent advances in wind engineering, Proc. of the 2nd Asia-Pacific Symp. on Wind Eng., Beijing, China, Int. Acad. Publ., Pergamon Press, 1, 1989, pp.: 362-372.
Ruscheweyh H., Windlastannahmen für turmartige Bauwerke, DIN-Mitt 71, 11 (1992) 644-647, Berlin.
DIN 1055, Lastannahmen für Bauten, Windwirkungen auf Bauwerke, 1989.
PrEN 1991-1-4.6 (Draft), 2003: Eurocode 1: Actions on structures – Part 1-4: General actions – Wind actions.
Shinozuka M., Stochastic Mechanics, v. 1, Depart. of Civil Eng. & Eng. Mech, Columbia Univ., 1987, NY, USA.
Shinozuka M., Jan C.M., Digital simulation of random processes and its application, J. Sound Vib., 25(1) (1972) 111-128. DOI: https://doi.org/10.1016/0022-460X(72)90600-1
Borri C., Generation procedures of stationary random processes simulating wind time series, Sezione Strutture 11 (1988), Univ. di Firenze.
Borri C., Crocchini F., Facchini L., Spinelli P., Numerical simulation of stationary and non-stationary sto-chastic processes: a comparative analysis for turbulent wind fields, Proc. 9th ICWE, New Delhi, India, 1995, pp. 47-55.
Ruscheweyh H., Practical experiences with wind-induced vibrations, J. Ind. Aerodyn, 33 (1990) 211-218. DOI: https://doi.org/10.1016/0167-6105(90)90036-C
Ruscheweyh H., Galemann T., Full-scale measurements of wind-induced oscillations of chimneys, J. Ind. Aerodyn., 65 (1990) 55-62. DOI: https://doi.org/10.1016/S0167-6105(97)00022-6
Melbourne W.H., Cheung J.C.K., Goddard C.R., Response to Wind Action of 265-m Mount Isa Stack, J. Struct. Eng. Div., ASCE, 109(11) (1983) 2561-2577. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1983)109:11(2561)
Cheng C.M., Kareem A., Acrosswind Response of Reinforced Concrete Chimneys, J. Wind Eng. Ind. Aerodyn., 41-42 (1992) 2141-2152. DOI: https://doi.org/10.1016/0167-6105(92)90649-U
Christensen O., Askegaard V., Wind Forces on and Excitation of a 130m Concrete Chimney, J. Wind Eng. Ind. Aerodyn., 3(1) (1978) 61-77. DOI: https://doi.org/10.1016/0167-6105(78)90028-4
Sanada S., Suzuki M., Matsumoto H., Full scale measurements of wind force acting on a 200m concrete chimney and the chimney response, J. Ind. Aerodyn., 43 (1992) 2165-2176. DOI: https://doi.org/10.1016/0167-6105(92)90651-P
Waldeck J.L., The measured and predicted response of a 300m concrete chimney, J. Wind Eng. Ind. Aerodyn., 4 (1992) 229-240. DOI: https://doi.org/10.1016/0167-6105(92)90415-7
Article Details
Abstract views: 249
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
