FE modeling of delamination growth in interlaminar fracture specimens
Vyacheslav Burlayenko
Department of Applied Mathematics; National Technical University ‘KhPI’; Kharkov; Ukraine (Ukraine)
https://orcid.org/0000-0003-0431-3103
Tomasz Sadowski
Department of Solid Mechanics; Faculty of Civil Engineering and Architecture; University of Technology in Lublin (Poland)
http://orcid.org/0000-0001-9212-8340
Abstract
Interlaminar fracture specimens like Double Cantilever Beam (DCB), End Notched Flexural (ENF), Single Leg Bending (SLB) etc. are widely used for studying the interlaminar toughness of composite laminates. The aim of this paper is to analysis delamination specimens within the framework of a meso-level damage modeling of composite laminates. In this case interlaminar interface is assumed as a damageable homogeneous layer between adjacent layers of the specimen bulk material. The degradation of the interlaminar connection can be taken into account by means either of an appropriate damage initiation criterion and damage evolution law or using fracture mechanics approach. Onset and growth of the delamination pre-existing crack in the fracture specimens are simulated by using both modeling possibility within commercial finite element code ABAQUSTM. Comparisons between numerical predictions of used different finite element models as well as available experimental data have been performed.
Keywords:
interlaminar fracture specimens, delamination, ABAQUS, finite element predictionsReferences
O’Brien T.K., Characterization of delamination onset and growth in a composite laminate, in: Reifsnider K.I. (Ed.), Damage in Composite Materials, ASTM STP 775. Am. Sot. Testing Mater. (1982): 140-167.
DOI: https://doi.org/10.1520/STP34325S
Google Scholar
Grigolyuk E.I, Kogan A.A. and Mamay V.I., Deformation problems of laminated structures with delaminations, Izv. Ross. Akad. Nauk., MTT 1 (1994): 6-34.
Google Scholar
ABAQUS User Manual. Version 6.6, ABAQUS Inc., Pawtucket, Rhode Island, USA, 2005.
Google Scholar
Whitney J.M., Experimental characterization of delamination fracture, in: N.J. Pagano (Ed.), Interlaminar Response of Composite Materials, Composite Materials Series 5 (1989): 111-239.
DOI: https://doi.org/10.1016/B978-0-444-87285-2.50007-8
Google Scholar
Li J., Lee S.M., Lee E.W. and O’Brien T.K., Evaluation of the edge crack torsion ECT test for Mode III interlaminar fracture toughness of laminated composites, J. Compos. Technol. Res. 19 (1997): 174-183.
DOI: https://doi.org/10.1520/CTR10028J
Google Scholar
Irwin G.R., Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech. 24 (1957): 361-366.
DOI: https://doi.org/10.1115/1.4011547
Google Scholar
Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fracture Mech. 9 (1977): 931-938.
DOI: https://doi.org/10.1016/0013-7944(77)90013-3
Google Scholar
Raju, I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fracture Mech. 38 (3) (1987): 251-274.
DOI: https://doi.org/10.1016/0013-7944(87)90220-7
Google Scholar
Zou Z., Reid S.R., Li S., Soden, P.D., Mode separation of energy release rate for delamination in composite laminates using sublaminates, Int. J. Solids Struct. 38 (2001): 2597-2613.
DOI: https://doi.org/10.1016/S0020-7683(00)00172-4
Google Scholar
Krueger R., The virtual crack closure technique: history, approach and applications, Applied Mechanical Review ASME 57(2) (2004): 109-142.
DOI: https://doi.org/10.1115/1.1595677
Google Scholar
Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968): 379-386.
DOI: https://doi.org/10.1115/1.3601206
Google Scholar
Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Methods Eng. 9 (1975): 187-207.
DOI: https://doi.org/10.1002/nme.1620090114
Google Scholar
Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract. 10 (4) (1974): 487-502.
DOI: https://doi.org/10.1007/BF00155252
Google Scholar
Allix O., Ladeveze P., Corigliano A., Damage analysis of interlaminar fracture specimens, Compos. Struct. 31 (1995): 66-74.
DOI: https://doi.org/10.1016/0263-8223(95)00002-X
Google Scholar
Allix O., Corigliano A., Modelling and simulation of crack propagation in mixed-modes interlaminar fracture specimens, Int. J. Fract. 77 (1996): 111-140.
DOI: https://doi.org/10.1007/BF00037233
Google Scholar
Schellekens J.C.J., de Borst R., A nonlinear finite-element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct. 30(9) (1993):1239-53.
DOI: https://doi.org/10.1016/0020-7683(93)90014-X
Google Scholar
Benzeggagh M.L., Kenane M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Science and Technol. 56 (1996): 439-449.
DOI: https://doi.org/10.1016/0266-3538(96)00005-X
Google Scholar
Mi U., Crisfield M.A., Davies G.A.O., Progressive delamination using interface elements, J. Compos. Mater. 32 (1998): 1246-1272.
DOI: https://doi.org/10.1177/002199839803201401
Google Scholar
Chen J., Crisfield M.A., Kinloch A.J., Busso E.P., Matthews F.L., Qiu Y., Predicting progressive delamination of composite material specimens via interface elements, Mech. Compos. Mater. Struct. 6 (1999): 301-317.
DOI: https://doi.org/10.1080/107594199305476
Google Scholar
Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Engng. 77(2) (2001): 111-170.
Google Scholar
Camanho P.P., Da´vila C.G., de Moura M.F., Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater. 37(16) (2003): 1415-1438.
DOI: https://doi.org/10.1177/0021998303034505
Google Scholar
Goyal-Singhal V., Johnson E.R., Da´vila C.G., Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities, Compos. Struct. 64 (2004): 91-105.
Google Scholar
Mabson G., Fracture Interface Elements, 46th PMC General Session of Mil-17 (Composites Materials Handbook) Organization, Charleston, SC, 2003.
Google Scholar
Robinson P., Besant T., Hitchings D., Delamination Growth Prediction Using a Finite Element Approach, 2nd ESIS TC4 Conference on Polymers and Composites, Les Diablerets, Switzerland, 1999
DOI: https://doi.org/10.1016/S1566-1369(00)80014-X
Google Scholar
Authors
Vyacheslav BurlayenkoDepartment of Applied Mathematics; National Technical University ‘KhPI’; Kharkov; Ukraine Ukraine
https://orcid.org/0000-0003-0431-3103
Authors
Tomasz SadowskiDepartment of Solid Mechanics; Faculty of Civil Engineering and Architecture; University of Technology in Lublin Poland
http://orcid.org/0000-0001-9212-8340
Statistics
Abstract views: 241PDF downloads: 140
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.