FE modeling of delamination growth in interlaminar fracture specimens
Article Sidebar
Open full text
Issue Vol. 2 No. 1 (2008)
-
Research into steel-concrete bond in fire conditions
Zoja Bednarek, Paweł Ogrodnik005-018
-
Designing the structure of a construction project operating system using evolutionary algorithm
Piotr Jaśkowski019-036
-
Proposition of a new method for the calculation of diagonal crack widths in reinforced concrete elements subjected to combined torsion and shear
Waldemar Budzyński037-064
-
The analysis of load carrying capacity and cracking of slightly reinforced concrete members in bending
Marta Słowik065-078
-
Experimental and numerical investigation of plywood progressive failure in CT tests
Ivelin Ivanov, Tomasz Sadowski, Magdalena Filipiak, Marcin Kneć079-094
-
FE modeling of delamination growth in interlaminar fracture specimens
Vyacheslav Burlayenko, Tomasz Sadowski095-109
-
Asymptotic stress field at the tip of an inclined crack terminating to an interface
Liviu Marsavina, Tomasz Sadowski111-124
-
Moisture measurements of the chalk rock walls from Kazimierz Dolny with the application of TDR method
Zbigniew Suchorab, Danuta Barnat-Hunek, Henryk Sobczuk125-140
-
Influence of the friction factor on the range of cement dispersion flow
Jerzy Szerafin141-153
Archives
-
Vol. 11 No. 2
2020-12-02 11
-
Vol. 10 No. 1
2020-12-02 12
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
-
Vol. 5 No. 2
2020-11-02 7
-
Vol. 4 No. 1
2020-11-02 9
-
Vol. 3 No. 2
2020-11-02 10
-
Vol. 2 No. 1
2020-11-02 9
-
Vol. 1 No. 1
2020-11-02 7
Main Article Content
DOI
Authors
Abstract
Interlaminar fracture specimens like Double Cantilever Beam (DCB), End Notched Flexural (ENF), Single Leg Bending (SLB) etc. are widely used for studying the interlaminar toughness of composite laminates. The aim of this paper is to analysis delamination specimens within the framework of a meso-level damage modeling of composite laminates. In this case interlaminar interface is assumed as a damageable homogeneous layer between adjacent layers of the specimen bulk material. The degradation of the interlaminar connection can be taken into account by means either of an appropriate damage initiation criterion and damage evolution law or using fracture mechanics approach. Onset and growth of the delamination pre-existing crack in the fracture specimens are simulated by using both modeling possibility within commercial finite element code ABAQUSTM. Comparisons between numerical predictions of used different finite element models as well as available experimental data have been performed.
Keywords:
References
O’Brien T.K., Characterization of delamination onset and growth in a composite laminate, in: Reifsnider K.I. (Ed.), Damage in Composite Materials, ASTM STP 775. Am. Sot. Testing Mater. (1982): 140-167. DOI: https://doi.org/10.1520/STP34325S
Grigolyuk E.I, Kogan A.A. and Mamay V.I., Deformation problems of laminated structures with delaminations, Izv. Ross. Akad. Nauk., MTT 1 (1994): 6-34.
ABAQUS User Manual. Version 6.6, ABAQUS Inc., Pawtucket, Rhode Island, USA, 2005.
Whitney J.M., Experimental characterization of delamination fracture, in: N.J. Pagano (Ed.), Interlaminar Response of Composite Materials, Composite Materials Series 5 (1989): 111-239. DOI: https://doi.org/10.1016/B978-0-444-87285-2.50007-8
Li J., Lee S.M., Lee E.W. and O’Brien T.K., Evaluation of the edge crack torsion ECT test for Mode III interlaminar fracture toughness of laminated composites, J. Compos. Technol. Res. 19 (1997): 174-183. DOI: https://doi.org/10.1520/CTR10028J
Irwin G.R., Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech. 24 (1957): 361-366. DOI: https://doi.org/10.1115/1.4011547
Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fracture Mech. 9 (1977): 931-938. DOI: https://doi.org/10.1016/0013-7944(77)90013-3
Raju, I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fracture Mech. 38 (3) (1987): 251-274. DOI: https://doi.org/10.1016/0013-7944(87)90220-7
Zou Z., Reid S.R., Li S., Soden, P.D., Mode separation of energy release rate for delamination in composite laminates using sublaminates, Int. J. Solids Struct. 38 (2001): 2597-2613. DOI: https://doi.org/10.1016/S0020-7683(00)00172-4
Krueger R., The virtual crack closure technique: history, approach and applications, Applied Mechanical Review ASME 57(2) (2004): 109-142. DOI: https://doi.org/10.1115/1.1595677
Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968): 379-386. DOI: https://doi.org/10.1115/1.3601206
Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Methods Eng. 9 (1975): 187-207. DOI: https://doi.org/10.1002/nme.1620090114
Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract. 10 (4) (1974): 487-502. DOI: https://doi.org/10.1007/BF00155252
Allix O., Ladeveze P., Corigliano A., Damage analysis of interlaminar fracture specimens, Compos. Struct. 31 (1995): 66-74. DOI: https://doi.org/10.1016/0263-8223(95)00002-X
Allix O., Corigliano A., Modelling and simulation of crack propagation in mixed-modes interlaminar fracture specimens, Int. J. Fract. 77 (1996): 111-140. DOI: https://doi.org/10.1007/BF00037233
Schellekens J.C.J., de Borst R., A nonlinear finite-element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct. 30(9) (1993):1239-53. DOI: https://doi.org/10.1016/0020-7683(93)90014-X
Benzeggagh M.L., Kenane M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Science and Technol. 56 (1996): 439-449. DOI: https://doi.org/10.1016/0266-3538(96)00005-X
Mi U., Crisfield M.A., Davies G.A.O., Progressive delamination using interface elements, J. Compos. Mater. 32 (1998): 1246-1272. DOI: https://doi.org/10.1177/002199839803201401
Chen J., Crisfield M.A., Kinloch A.J., Busso E.P., Matthews F.L., Qiu Y., Predicting progressive delamination of composite material specimens via interface elements, Mech. Compos. Mater. Struct. 6 (1999): 301-317. DOI: https://doi.org/10.1080/107594199305476
Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Engng. 77(2) (2001): 111-170.
Camanho P.P., Da´vila C.G., de Moura M.F., Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater. 37(16) (2003): 1415-1438. DOI: https://doi.org/10.1177/0021998303034505
Goyal-Singhal V., Johnson E.R., Da´vila C.G., Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities, Compos. Struct. 64 (2004): 91-105.
Mabson G., Fracture Interface Elements, 46th PMC General Session of Mil-17 (Composites Materials Handbook) Organization, Charleston, SC, 2003.
Robinson P., Besant T., Hitchings D., Delamination Growth Prediction Using a Finite Element Approach, 2nd ESIS TC4 Conference on Polymers and Composites, Les Diablerets, Switzerland, 1999 DOI: https://doi.org/10.1016/S1566-1369(00)80014-X
Article Details
Abstract views: 339
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
