O’Brien T.K., Characterization of delamination onset and growth in a composite laminate, in: Reifsnider K.I. (Ed.), Damage in Composite Materials, ASTM STP 775. Am. Sot. Testing Mater. (1982): 140-167.
DOI: https://doi.org/10.1520/STP34325S
Grigolyuk E.I, Kogan A.A. and Mamay V.I., Deformation problems of laminated structures with delaminations, Izv. Ross. Akad. Nauk., MTT 1 (1994): 6-34.
ABAQUS User Manual. Version 6.6, ABAQUS Inc., Pawtucket, Rhode Island, USA, 2005.
Whitney J.M., Experimental characterization of delamination fracture, in: N.J. Pagano (Ed.), Interlaminar Response of Composite Materials, Composite Materials Series 5 (1989): 111-239.
DOI: https://doi.org/10.1016/B978-0-444-87285-2.50007-8
Li J., Lee S.M., Lee E.W. and O’Brien T.K., Evaluation of the edge crack torsion ECT test for Mode III interlaminar fracture toughness of laminated composites, J. Compos. Technol. Res. 19 (1997): 174-183.
DOI: https://doi.org/10.1520/CTR10028J
Irwin G.R., Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech. 24 (1957): 361-366.
DOI: https://doi.org/10.1115/1.4011547
Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fracture Mech. 9 (1977): 931-938.
DOI: https://doi.org/10.1016/0013-7944(77)90013-3
Raju, I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fracture Mech. 38 (3) (1987): 251-274.
DOI: https://doi.org/10.1016/0013-7944(87)90220-7
Zou Z., Reid S.R., Li S., Soden, P.D., Mode separation of energy release rate for delamination in composite laminates using sublaminates, Int. J. Solids Struct. 38 (2001): 2597-2613.
DOI: https://doi.org/10.1016/S0020-7683(00)00172-4
Krueger R., The virtual crack closure technique: history, approach and applications, Applied Mechanical Review ASME 57(2) (2004): 109-142.
DOI: https://doi.org/10.1115/1.1595677
Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968): 379-386.
DOI: https://doi.org/10.1115/1.3601206
Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Methods Eng. 9 (1975): 187-207.
DOI: https://doi.org/10.1002/nme.1620090114
Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract. 10 (4) (1974): 487-502.
DOI: https://doi.org/10.1007/BF00155252
Allix O., Ladeveze P., Corigliano A., Damage analysis of interlaminar fracture specimens, Compos. Struct. 31 (1995): 66-74.
DOI: https://doi.org/10.1016/0263-8223(95)00002-X
Allix O., Corigliano A., Modelling and simulation of crack propagation in mixed-modes interlaminar fracture specimens, Int. J. Fract. 77 (1996): 111-140.
DOI: https://doi.org/10.1007/BF00037233
Schellekens J.C.J., de Borst R., A nonlinear finite-element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct. 30(9) (1993):1239-53.
DOI: https://doi.org/10.1016/0020-7683(93)90014-X
Benzeggagh M.L., Kenane M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Science and Technol. 56 (1996): 439-449.
DOI: https://doi.org/10.1016/0266-3538(96)00005-X
Mi U., Crisfield M.A., Davies G.A.O., Progressive delamination using interface elements, J. Compos. Mater. 32 (1998): 1246-1272.
DOI: https://doi.org/10.1177/002199839803201401
Chen J., Crisfield M.A., Kinloch A.J., Busso E.P., Matthews F.L., Qiu Y., Predicting progressive delamination of composite material specimens via interface elements, Mech. Compos. Mater. Struct. 6 (1999): 301-317.
DOI: https://doi.org/10.1080/107594199305476
Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Engng. 77(2) (2001): 111-170.
Camanho P.P., Da´vila C.G., de Moura M.F., Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater. 37(16) (2003): 1415-1438.
DOI: https://doi.org/10.1177/0021998303034505
Goyal-Singhal V., Johnson E.R., Da´vila C.G., Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities, Compos. Struct. 64 (2004): 91-105.
Mabson G., Fracture Interface Elements, 46th PMC General Session of Mil-17 (Composites Materials Handbook) Organization, Charleston, SC, 2003.
Robinson P., Besant T., Hitchings D., Delamination Growth Prediction Using a Finite Element Approach, 2nd ESIS TC4 Conference on Polymers and Composites, Les Diablerets, Switzerland, 1999
DOI: https://doi.org/10.1016/S1566-1369(00)80014-X