Asymptotic stress field at the tip of an inclined crack terminating to an interface
Article Sidebar
Open full text
Issue Vol. 2 No. 1 (2008)
-
Research into steel-concrete bond in fire conditions
Zoja Bednarek, Paweł Ogrodnik005-018
-
Designing the structure of a construction project operating system using evolutionary algorithm
Piotr Jaśkowski019-036
-
Proposition of a new method for the calculation of diagonal crack widths in reinforced concrete elements subjected to combined torsion and shear
Waldemar Budzyński037-064
-
The analysis of load carrying capacity and cracking of slightly reinforced concrete members in bending
Marta Słowik065-078
-
Experimental and numerical investigation of plywood progressive failure in CT tests
Ivelin Ivanov, Tomasz Sadowski, Magdalena Filipiak, Marcin Kneć079-094
-
FE modeling of delamination growth in interlaminar fracture specimens
Vyacheslav Burlayenko, Tomasz Sadowski095-109
-
Asymptotic stress field at the tip of an inclined crack terminating to an interface
Liviu Marsavina, Tomasz Sadowski111-124
-
Moisture measurements of the chalk rock walls from Kazimierz Dolny with the application of TDR method
Zbigniew Suchorab, Danuta Barnat-Hunek, Henryk Sobczuk125-140
-
Influence of the friction factor on the range of cement dispersion flow
Jerzy Szerafin141-153
Archives
-
Vol. 11 No. 2
2020-12-02 11
-
Vol. 10 No. 1
2020-12-02 12
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
-
Vol. 5 No. 2
2020-11-02 7
-
Vol. 4 No. 1
2020-11-02 9
-
Vol. 3 No. 2
2020-11-02 10
-
Vol. 2 No. 1
2020-11-02 9
-
Vol. 1 No. 1
2020-11-02 7
Main Article Content
DOI
Authors
Abstract
This paper presents the numerical results for the asymptotic stress field and the fracture parameters at the tip of an inclined cracks terminating to a bi-material ceramic interface. The numerical analysis was carried out using FRANC2D/L fracture analysis code. A biaxial specimen was modeled for producing different mixed mode loads and two materials combinations of Al2O3 and ZrO2 were considered. The influence of the material combination and applied mixed mode load on the singularity orders, stress distributions and stress intensity factors is highlighted.
Keywords:
References
Kaya C., Butler E.G., Lewis M.H., Co-extrusion of Al2O3/ZrO2 bi-phase high temperature ceramics with fine scale aligned microstructures, Journal of the European Ceramic Society 23, (2003), pp. 935-942.
Tilbrook M. T., Rozenburg K., Steffler E. D., Rutgers L, Hoffman M., Crack propagation paths in layered, graded composites, Composites: Part B 37, (2006), pp. 490-498.
Zak A.R., Williams M.L., Crack point stress singularities at a bi-material interface, J. Appl. Mech, Volume: 30, (1963), pp. 142-143.
Cook T.S., Erdogan F., Stress in bonded materials with a crack perpendicular to the interface, Int. J. Eng. Sci., Volume: 10, (1972), pp. 677-697.
Erdogan F., Biricikoglu V., Two bonded half planes with a crack going through the interface, Int. J. Engng. Sci., Volume: 11, (1973), pp. 745-766.
Bogy D.B., On the plane elastic problem of a loaded crack terminating a material interface, J. Int. Fract., Volume: 38, (1971), pp. 911-918.
Wang W.C., Chen J.T., Theoretical and experimental re-examination of a crack at a biomaterial interface, J. Strain Anal., Volume: 28, (1993), pp. 53-61.
Lin K.Y., Mar J.W., Finite element analysis of stress intensity factors for crack at a biomaterial interface, Int. J. Fract., Volume: 12, (1976), pp. 451-531.
Ahmad J., A micromechanics analysis of cracks in unidirectional fibre composite, J. Appl. Mech., Volume: 58, (1991), pp. 964-972.
Tan M., Meguid S.A., Dynamic analysis of cracks perpendicular to bimaterial interfaces using new singular finite element, Finite Elements in Analysis and Design, 22, (1996), pp. 69-83.
Chen D.H., A crack normal to and terminating at a bimaterial interface, Engng. Fract. Mech., Volume: 19, (1994), pp. 517-532.
Chen S.H., Wang T.C., Kao – Walter S., A crack perpendicular to the bi-material interface in finite solid, Int. J. Solids Struct, 40, (2003), pp. 2731-2755.
He M.Y., Hutchinson J.W., Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., Volume: 25, (1993), pp. 1053-1067.
Chang J., Xu J.-Q., The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface, Int. J. Mechanical Sciences, 49, (2007), pp. 888-897.
Lin Y.Y., Sung J.C., Singularities of an inclined crack terminating at an anisotropic biomaterial interface, Int. J. Solids Struct, 38, (1997), pp. 3727-3754.
Wang T.C., Stahle P., Stress state in front of a crack perpendicular to bi-material interface, Engng. Fract. Mech., Volume: 4, (1998), pp. 471-485.
Liu L., Kardomateas G. A., Holmes J. W., Mixed – mode stress intensity factors for a crack in an anisotropic bi-material strip, Int. J. Solids Struct., 41, (2004), pp. 3095-3017.
Kaddouri K., Belhouari M., Bachir Bouiadjra B., Serier B., Finite element analysis of crack perpendicular to bi-material interface: Case of couple ceramic-metal, Comput. Mater. Sci., 35, (2006), pp. 53-60.
Madani K., Belhouari M., Bachir Bouiadjra B., Serier B., Benguediab M., Crack deflection at an interface of alumina/metal joint: A numerical analysis, Comput. Mater. Sci., 35, (2007), pp. 625-630.
Marsavina L., Sadowski T., Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Proceedings of IWCMM 17, Paris, 2007, p. 45-46.
He M.Y., Hsueh C.H., Becher P.F., Deflection versus penetration of a wedge-load crack: effects of branch-crack length and penetrated-layer width, Composites: Part B, 31, (2000), pp.299-308.
Marsavina L., Sadowski T., Effect of biaxial load on crack deflection/penetration at bi-material ceramic interface, Int. J. Fracture (2008), OnLine First, DOI: 10.1007/s10704-008-9181-y. DOI: https://doi.org/10.1007/s10704-008-9181-y
Dundurs J., Effect of elastic constants on stress in a composite under plane deformation, J. Compos. Mater., Volume: 1, (1969), pp. 310-322.
Zang Z., Suo Z., Split singularities and the competition between crack penetration and debond at a bimaterial interface, Int. J. Solids Struct., 44, (2007), p. 4559-4573.
Bold P. E, Brown M. W., Allen R.J., Shear Mode crack growth and rolling contact fatigue, Wear, 144, (1991), pp. 307-317.
Iesulauro, E., FRANC2D/L a Crack Propagation simulator for plane layered materials, Cornell University, Ithaca, 2002.
Marsavina L., Sadowski T., The influence of the interface on fracture parameters, Proceedings of the AIQ – ICF Conference, Alger 2008 (in press). DOI: https://doi.org/10.1007/978-90-481-2669-9_26
Murakami Y., Stress intensity factors handbook, Vol. I, Pergamon Press, Oxford, 1987.
Article Details
Abstract views: 255
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
