Golewski G., Sadowski T., "The parameters of concrete fracture mechanics are determined on the basis of experimental tests according to the I crack model", Construction Review, no. 7–8, (2005), pp. 28–33.
Smith G.J., Rad F. N., "Economic Advantages of High-Strength Concretes in Columns", Concrete International, vol. 11, no. 4, (1989), pp. 37-43.
Jóźwiak – Niedźwiedzka D., "Preventing peeling of concrete surfaces with the use of moistened drug aggregate", Roads and bridges, no. 2, (2006), pp. 37-54.
Cheng Y., Zhang Y., Jiao Y., "Quantitative analysis of concrete property under effects of crack, freeze-thaw and carbonation", Construction Building Materials, no. 129, (2016), pp. 106-115. https://doi.org/10.1016/j.conbuildmat.2016.10.113
DOI: https://doi.org/10.1016/j.conbuildmat.2016.10.113
Song P.S., "Mechanical properties of high – strength steel fiber reinforced concrete", Construction and Building Materials, vol. 18, no. 9, (2004), pp. 669-73.
DOI: https://doi.org/10.1016/j.conbuildmat.2004.04.027
Holschemacher K., Mueller T., Ribakov Y., "Effect of steel fibres on mechanical properties of high – strength concrete", Materials and design, no. 31, (2010), pp. 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025
DOI: https://doi.org/10.1016/j.matdes.2009.11.025
Kosior- Kazberuk M., "Variations in fracture energy of concrete subjected to cyclic freezing and thawing", Civil and Mechanical Engineering, no.13, (2013), pp. 254-259. https://doi.org/10.1016/j.acme.2013.01.002
DOI: https://doi.org/10.1016/j.acme.2013.01.002
ASTM C 666: 2008 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing.
Shah S.P., "Size – effect method for determining fracture energy and process zone size of concrete, RILEM TC 89–FMT", Materials and Structures, no. 23, (1990),pp. 461–465.
DOI: https://doi.org/10.1007/BF02472030
Jenq Y. S., Shah S. P., "A two parameter fracture model for concrete", Journal of Engineering Mechanics, no. 111, (1985), pp. 1227–1241.
Elices M, Guinea G, Planas J., "Measurement of the fracture energy using three-point bend tests: part 3 – influence of cutting the P-δ tail", Material Structures, vol. 25, no. 6, (1992), pp.327–34.
DOI: https://doi.org/10.1007/BF02472591
Neimitz A., Mechanika pękania, PWN, Warszawa 1998.
Grzegorz Lesiuk, "Application of a New, Energy-Based ΔS* Crack Driving Force for Fatique Crack Growth Rate Description", Materials, no. 12, (2019), pp. 1-13. https://doi.org/10.3390/ma12030518
DOI: https://doi.org/10.3390/ma12030518
Ma H., Yu H., Li C., Tan Y., Cao W., Da B., "Freeze-thaw damage to high- preformance concrete with synthetic fibre and fly ash due to ethylene glycol deicer", Construction and Building Materials, no. 187, (2018), pp. 197-204. https://doi.org/10.1016/j.conbuildmat.2018.07.189
DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.189
Wawrzeńczyk J., Molendowska A., Kłak A., "Frost durability of steel fiber self-compacting concrete for pavements", The Baltic Journal of Road and Bridge Engineering, vol. 11, no. 1, (2016), pp. 35-42. https://doi.org/10.1088/1757-899X/471/3/032023
DOI: https://doi.org/10.3846/bjrbe.2016.04
Lee, J. S., "Properties on the Freeze-Thaw Resistance of High Performance Concrete Using Fibers and Mineral Admixtures", Materials science forum, vol. 893, (2017), pp. 375-379. https://doi.org/10.4028/www.scientific.net/MSF.893.375
DOI: https://doi.org/10.4028/www.scientific.net/MSF.893.375
Smarzewski P., Barnat-Hunek D., "Effect of fiber Hybridization on durability Related Properties of Ultra-High Performance Concrete", International Journal of Concrete Structures and Materials, vol. 11, no. 2, (2017), pp. 315-325. https://doi.org/10.1007/s40069-017-0195-6
DOI: https://doi.org/10.1007/s40069-017-0195-6