Comparison of approaches to reliability verification of existing steel structures
Article Sidebar
Issue Vol. 21 No. 4 (2022)
-
Analysis of environmental consequences occurring in the life cycle of a retail facility
Daniel Tomporowski, Taras Markiv005-012
-
Comparison of approaches to reliability verification of existing steel structures
Vitali Nadolski, Milan Holicky, Miroslav Sykora, Viktar Tur013-024
-
Assessment of effectiveness of selected adaptation actions to climate change. The example of the New Centre of Lodz.
Anna Dominika Bochenek, Katarzyna Klemm, Magdalena Woźna025-042
-
The sands of medium density and sandy loam density differences investigation while cement injection and pressuremetry crimping
Siergey Ihnatov043-050
-
Local vertical compressive stress in the crane runway beam web
Łukasz Polus, Marcin Chybiński, Zdzisław Kurzawa051-066
-
Methods of protection and the state of preservation of the walls topping of Gothic brick castles
Maciej Trochonowicz, Katarzyna Drobek067-078
-
Planning protection of Ciechanow castle versus contemporary exposition in the landscape
Katarzyna Drobek, Kamila Boguszewska079-088
-
Improving functional standards of apartments in buildings from large-panels, on the example of solutions applied in Lublin in the 1970s and 1980s of the 20th century
Michał Dmitruk089-098
Archives
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
Main Article Content
DOI
Authors
Abstract
Many existing steel structures are exposed to degradation due to corrosion or fatigue and to increasing loads. Their reliability assessment is then needed. The key question is whether a particular structure can be preserved ‘as it is’, or needs to be strengthened, or whether it needs to be replaced. Unnecessary replacements of existing structures may be avoided and the remaining service life of existing steel structures may be authorized by: using advanced reliability verification techniques, optimizing target reliability, and obtaining data for a specific site or structure. In this contribution, the application of advanced reliability approaches is illustrated by the assessment of an existing steel structure. The case study demonstrates that such approaches may significantly improve assessment and allow to increase the load-bearing capacity of the structure (in the case under investigation by 10 to 20%). Improvements in reliability assessment are attributed to the use of an optimal target reliability level, case-specific statistical parameters and probabilistic distributions of the basic variables, and adjusted partial factors.
Keywords:
References
Sykora M., Mlcoch J. and Ryjacek P., “Uncertainties in Characteristic Strengths of Historic Steels Using Non-Destructive Techniques”, Trans. VSB - Tech. Univ. Ostrava, Civ. Eng. Ser, Ostrava, vol. 19, no. 2, 2019, pp. 65–70. https://doi.org/10.35181/tces-2019-0022
Sýkora M., Holický M. and Diamantidis D., “Probabilistic updating in the reliability assessment of industrial heritage structures”, HERON, vol. 59(2/3), 2014, pp. 59-78.
Sýkora M., Holický M. and Markova J., “Verification of existing reinforced concrete bridges using the semi-probabilistic approach”, Engineering Structures, vol. 56, 2013, pp. 1419–1426. https://doi.org/10.1016/j.engstruct.2013.07.015 DOI: https://doi.org/10.1016/j.engstruct.2013.07.015
Sýkora M. and Holický M., “Verification of existing reinforced concrete structures using the design value method”, in Proceedings of the 3th International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, Leiden. 2012. pp. 821-828.
fib Bulletin 80. Partial Factor Methods for Existing Structures. Recommendation, ed. Caspeele R. // fib. 2016. 129 p. ISBN 978-2-88394-120-5.
EN 1990. Eurocode - Basis of structural design. Brussels: CEN. 2002.
ISO 2394. General Principles on Reliability for Structures. 4th ed. Geneve, Switzerland: ISO, 2015. p. 111.
Faber M.H., “Reliability based assessment of existing structures”, Progress in Structural Engineering and Materials, vol. 2, 2000, pp. 247–53. https://doi.org/10.1002/1528-2716(200004/06)2:2<247::AID-PSE31>3.0.CO;2-H DOI: https://doi.org/10.1002/1528-2716(200004/06)2:2<247::AID-PSE31>3.0.CO;2-H
Schueremans L. and Van Gemert D., “Assessing the safety of existing structures: reliability based assessment framework, examples and application”, Journal of Civil Engineering and Management, vol. X, 2004, pp. 131–41. https://doi.org/10.3846/13923730.2004.9636297 DOI: https://doi.org/10.1080/13923730.2004.9636297
Diamantidis D., Sykora M. and Lenzi D., “Optimizing Monitoring: Standards, Reliability Basis and Application to Assessment of Roof Snow Load Risks”, Structural Engineering International - Journal of IABSE, vol. 28(3), 2018, pp. 269-279. https://doi.org/10.1080/10168664.2018.1462131 DOI: https://doi.org/10.1080/10168664.2018.1462131
Braml T., Manfred K. and Mangerig I., “Use of Monitoring Data for a Probabilistic Analysis of Structures”, in IABSE Symposium: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. 2010, pp. 126-127. https://doi.org/10.2749/222137810796012252 DOI: https://doi.org/10.2749/222137810796012252
Caspeele R., Sýkora M., Allaix D.L. and Steenbergen R., “The design value method and adjusted partial factor approach for existing structures”, Structural Engineering International, vol. 23. no. 4, 2013, pp. 386-393. https://doi.org/10.2749/101686613X13627347100194 DOI: https://doi.org/10.2749/101686613X13627347100194
JCSS Probabilistic Model Code, Joint Committee of Structural Safety. 2001.
CEN TC250/ Ad Hoc Group Reliability of Eurocodes (convenor - Ton Vrouwenvelder) Technical Report for the reliability background of Eurocodes. Draft June 2021. p.165, 2021.
Lenner R., Ryjacek P. and Sykora M., “Resistance models for semi-probabilistic assessment of historic steel bridges”, in IABSE Symposium, Wroclaw 2020: Synergy of Culture and Civil Engineering. Wrocław, 2020, pp. 1061–1068. DOI: https://doi.org/10.2749/wroclaw.2020.1061
Nadolski V. and Sykora M., “Uncertainty in Resistance Models for Steel Members”, Trans. VŠB – Tech. Univ. Ostrava, Civ. Eng. Ser., vol. 14, no. 2, 2015, pp. 26–37. https://doi.org/10.2478/tvsb-2014-0028 DOI: https://doi.org/10.2478/tvsb-2014-0028
ISO 4355. Basis for design of structures - Determination of snow loads on roofs. Geneve: ISO, 2013. 40 p.
EN 1991-1-3. Eurocode 1: Actions on structures - Part 1-3: General actions; Snow loads. Brussels: CEN, 2003.
Sanpaolesi L., Snow Loads (Phase 1 Final Report to the European Commission, Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works). Pisa: Univ. of Pisa. 1998.
Sadovský Z., Response to discussion on “Exceptional snowfalls and the assessment of accidental loads for structural design” from M. Kasperski [Cold Regions Science and Technology 101 (2014) 83–86], Cold Regions Science and Technology, vol. 110, 2015, pp. 67-69. https://doi.org/10.1016/j.coldregions.2014.11.008 DOI: https://doi.org/10.1016/j.coldregions.2014.11.008
Rózsás Á., Sykora M. and László Gergely Vigh. “Long-Term Trends in Annual Ground Snow Maxima for the Carpathian Region”, Applied Mechanics and Materials, vol. 821, 2016, pp. 753-760. https://doi.org/10.4028/www.scientific.net/AMM.821.753 DOI: https://doi.org/10.4028/www.scientific.net/AMM.821.753
Rózsás Á. and Sykora M. “Model Comparison and Quantification of Statistical Uncertainties for Annual Maxima of Ground Snow Loads”, in Safety and Reliability of Complex Engineered Systems – Proceedings of the European Safety and Reliability Conference ESREL 2015, 2015, pp. 2667-2674. DOI: https://doi.org/10.1201/b19094-349
Rózsás Á. and Sykora M., “Effect of Statistical Uncertainties in Ground Snow Load on Structural Reliability”, in Proceedings of IABSE Conference Geneva 2015, Structural Engineering: Providing Solutions to Global Challenges, 2015. pp. 220-227. DOI: https://doi.org/10.2749/222137815818357142
Nadolski V., Rózsás Á. and Sykora M., “Calibrating Partial Factors - Methodology, Input Data and Case Study of Steel Structures”, Periodica Polytechnica, vol. 63(1), 2019, pp. 222-242. https://doi.org/10.3311/PPci.12822 DOI: https://doi.org/10.3311/PPci.12822
Ceribasi S., “Reliability of Steel Truss Roof Systems Under Variable Snow Load Profiles”, International Journal of Steel Structures, vol. 20, 2020, pp. 567–582. https://doi.org/10.1007/s13296-020-00307-7 DOI: https://doi.org/10.1007/s13296-020-00307-7
Klasson A., Björnsson I., Crocetti R. and Frühwald Hansson E., “Slender Roof Structures - Failure Reviews and a Qualitative Survey of Experienced Structural Engineers”, Structures, vol. 15, 2018, pp. 174-183. https://doi.org/10.1016/j.istruc.2018.06.009 DOI: https://doi.org/10.1016/j.istruc.2018.06.009
prEN 1990-2 Eurocode - Basis of assessment and retrofitting of existing structures: general rules and actions (draft April 2021). CEN/TC 250/WG 2. – 2021.
Holický M., “Optimisation of the target reliability for temporary structures”, Civil Engineering and Environmental Systems, vol. 30, no. 2, 2013, pp. 87-96. https://doi.org/10.1080/10286608.2012.733373 DOI: https://doi.org/10.1080/10286608.2012.733373
Steenbergen R. and Vrouwenvelder A., “Safety philosophy for existing structures and partial factors for traffic load on bridges”, Heron, vol. 55, no. 2, 2010, pp. 123-140.
Steenbergen R., Sýkora M., Diamantidis D. and, Holický M., “Economic and human safety reliability levels for existing structures”, Structural Concrete, vol. 16, no. 3, 2015, pp. 323-332. https://doi.org/10.1002/suco.201500022 DOI: https://doi.org/10.1002/suco.201500022
Sýkora M., Diamantidis D., Holický M. and Jung K., “Target Reliability for Existing Structures Considering Economic and Societal Aspects”, Structure and Infrastructure Engineering, vol. 13, no. 1, 2017, pp. 181-194. https://doi.org/10.1201/9781351204590-16 DOI: https://doi.org/10.1080/15732479.2016.1198394
Holicky M., “Safety design of lightweight roofs exposed to snow loads”, Engineering Sciences, vol. 58, 2007, pp. 51-57. https://doi.org/ 10.2495/EN070061
Holický M. and Marková J., “Reliability of light-weight roofs exposed to snow load”. Journal Civ. Eng., vol. 16, no. 3, 2007, pp. 65–69. DOI: https://doi.org/10.2495/EN070061
Maslak M. and Małgorzata S., “The axial force influence on the flexibility of steel joints subject to bending under fully developed fire conditions”, Budownictwo i Architektura, vol. 13, 2014, pp. 251-258. https://doi.org/10.35784/bud-arch.1827 DOI: https://doi.org/10.35784/bud-arch.1827
Gulvanessian H. and Holicky M., “Eurocodes: using reliability analysis to combine action effects”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, vol. 158(4), 2015, pp. 243–252. https://doi.org/10.1680/stbu.2005.158.4.243 DOI: https://doi.org/10.1680/stbu.2005.158.4.243
Article Details
Abstract views: 261
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
