Comparison of different strength characteristics of gravel concrete with variable index w/c
Article Sidebar
Open full text
Issue Vol. 16 No. 3 (2017)
-
Experimental modal analysis in research
Mariusz Żółtowski, Krzysztof Napieraj005-012
-
The evaluation of dynamic of designed truss railway bridge in the light of Eurocodes standards
Radosław Oleszek, Mirosław Wyrzykowski, Krzysztof Grej, Jerzy Bąk013-024
-
Evaluation of degradation of bricks using FRF
Mariusz Żółtowski, Krzysztof Napieraj025-036
-
Innovative buildings and structures as a means of humanization of urban space
Maksim Votinov, Olga Smirnova037-043
-
Importing the basic map to the BIM model
Andrzej Szymon Borkowski045-051
-
Mechanical properties of cement and cement-asphalt matrices with rubber powder
Jerzy Kukiełka053-063
-
Visual symbols of new identity in cities of modern Ukraine during the interwar period
Svitlana Linda, Olga Mychajłyszyn065-076
-
The impact of maintenance on wood column capacity of the XVIIIth to XIXth century of arcaded houses from the Żuławy region
Tomasz Zybała077-094
-
Numerical modelling of hydraulically bonded mixture with rubber admixture due to applied mechanical loadings
Daniel Pietras, Tomasz Sadowski095-102
-
A beam or a slab? Classification of structural members according to the theory of solid mechanics and engineering literature
Marcin Samborski, Marta Słowik103-112
-
Summary of laboratory tests of sandstone for pull-out test analysis
Jakub Gontarz, Jerzy Podgórski, Marek Kalita, Michał Siegmund113-123
-
An analysis of the impact surface roughness of concrete substrate as a factor influencing the bond strength in composite concrete elements
Dominika Franczak-Balmas125-134
-
The analysis of the settlement of the various types of geodetic benchmarks
Łukasz Borowski, Agnieszka Lal, Krzysztof Nepelski135-142
-
Lubelszczyzna rocks in the construction and architecture of the region – glaukonityte
Lucjan Gazda143-154
-
Comparison of different strength characteristics of gravel concrete with variable index w/c
Stanisław Fic, Andrzej Szewczak155-166
Archives
-
Vol. 18 No. 4
2020-04-23 8
-
Vol. 18 No. 3
2020-01-24 8
-
Vol. 18 No. 2
2019-11-20 8
-
Vol. 18 No. 1
2019-09-30 8
-
Vol. 17 No. 4
2019-10-10 16
-
Vol. 17 No. 3
2019-10-10 15
-
Vol. 17 No. 2
2019-10-10 16
-
Vol. 17 No. 1
2019-10-10 21
-
Vol. 16 No. 4
2019-10-14 14
-
Vol. 16 No. 3
2019-10-14 15
-
Vol. 16 No. 2
2019-10-14 12
-
Vol. 16 No. 1
2019-10-15 20
-
Vol. 15 No. 4
2019-10-17 19
-
Vol. 15 No. 3
2019-10-15 13
-
Vol. 15 No. 2
2019-10-16 14
-
Vol. 15 No. 1
2019-10-09 28
-
Vol. 14 No. 4
2020-04-07 19
-
Vol. 14 No. 3
2020-04-15 25
-
Vol. 14 No. 2
2020-04-20 15
-
Vol. 14 No. 1
2020-04-25 14
Main Article Content
DOI
Authors
Abstract
Concrete, as a universal, composite material, is used in structures under the influence of various static, dynamic loads, influences of the external environment, such as sudden impacts, temperature, humidity. Ensuring concrete constructions for safe operation and durability are tasks placed in the design phase, consisting in the testing of mixtures and concrete samples. The studies serve as the most accurate representation of concrete in natural conditions, taking into account the loads during operation. Concrete testing in the laboratory relates to the determination of the compressive strength (fc), the tensile strength (fct); in the area of durability: frost resistance, corrosion resistance, influence of high temperature, absorbability. In the case of concrete durability, the dynamic modulus of elasticity Ed, the stress intensity index (KIC), or the impact of dynamic loads on the durability and strength of concrete are determined – nowadays, they are a rapidly growing test group, which is also related to the emergence of new types of cements, aggregates and consequently new generation concrete, i.e. HSC, UHSC, HPC. Also looking for opportunities to modify and enhance the durability of traditional concrete. Undoubtedly, for all of the aforementioned features of the concrete, the w/c ratio is the decisive factor as the main structural parameter defining the matrix system – aggregate. The paper presents comparative analysis of several strengths of concrete, depending on w/c (values of 0.4-0.7). A fixed amount of aggregate (gravel) was assumed. The influence of the w/c ratio on: fc, fct, KIC, Ei of gravel concrete was analyzed.
Keywords:
References
[2] Ślusarek J., Problemy trwałości wybranych konstrukcji betonowych, wyd. Politechniki Śląskiej, Gliwice, 2008.
[3] Karaś S., Słowik M., Distribution of Reinforcement in Tensile Flanges of Concrete T–shape Continuous Beam, Journal of Civil Engineering and Architecture 4(11) (2010) 59-64.
[4] Dzierżanowski A., Szymaniec S., Drgania napędów elektrycznych, fundamentów, konstrukcji wsporczych oraz budynków przemysłowych, Wiadomości Elektrotechniczne 4 (2000) 190-193.
[5] Krętowski J., Tribiłło R., Wpływ obciążenia temperaturowego na stan odkształceń płyty przekrywającej zbiornik wypełniony ciekłym medium, Przegląd Budowlany 81(9) (2010) 34-38.
[6] Duży S., Dyduch G., Wpływ czynników środowiskowych na zużycie techniczne konstrukcji obudowy budowli podziemnych, Górnictwo i Geologia 5(2) (2010) 37-46.
[7] Jankowiak T., Kryteria zniszczenia betonu poddanego obciążeniom quasi – statycznym i dynamicznym, rozprawa doktorska, Wyd. Politechniki Poznańskiej, Poznań, 2011.
[8] Shradar E.K., Impact resistance and test procedure for concrete, ACI 78(2) (1981) 141-146.
[9] Cantwell W.J., Morton J., The Impact resistance of composite materials, Composites 22(5) (1991) 347-362.
[10] Song P.S., Wu J.C., Hwong S., Shen B.C. Statistical analysis of impact strength reliability of steel – polypropylene hybrid fiber – reinforced concrete, Construction and Building Materials 19(1) (2005) 1-9.
[11] Krajenovic D., Silva M.A.G., Analysis of tests on impact strength of concrete armor blocks, Journal of Impact Eng. 2(4) (1984) 331-343.
[12] Fic S., Nikolayevych V., Dorofeev V.S., Procesy samoorganizacji struktury kompozytowych materiałów budowlanych, Lublin University of Technology, Lublin, 2013.
[13] Kolluru S, Popovics J., Sahah S., Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinder, Cem. Concrete and Aggregate 22(2) (2000) 81-89.
[14] Fic S. Beton pri udarom magrużkie, Odessa 2004, p.30.
[15] Neville A.M., Properties of concrete, London 2010.
[16] Shradar E.K., Impact resistance and test procedure for concrete, ACI 78(2) (1981) 141-146.
[17] Brandt A.M., Prokopski G., On the fractal dimensions of fracture surfaces of concrete elements, J. Mater. Sci. 28 (1993) 4762-4766.
[18] Hughes B.P., Gregory R., The impact strength of concrete using Green’s ballistic pendulum, Proc. Inst. Of Civil Eng. 41. London, 1968.
[19] Vyrovoy V.N., Dorofeev S., Suhanov V.G., Kompozicionnye stroitelne materialy i konstrukcji, Odessa 2010 p. 68.
Article Details
Abstract views: 326
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
