Jin F. et al., “Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders,” Chemosphere, vol. 144, (Feb. 2016), pp. 681–688. https://doi.org/10.1016/j.chemosphere.2015.09.046
DOI: https://doi.org/10.1016/j.chemosphere.2015.09.046
Voglar G. E. and Leštan D., “Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives,” Journal of Hazardous Materials, vol. 192, no. 2, (Aug. 2011), pp. 753–762. https://doi.org/10.1016/J.JHAZMAT.2011.05.089
DOI: https://doi.org/10.1016/j.jhazmat.2011.05.089
Scanferla P. et al., “An innovative stabilization/solidification treatment for contaminated soil remediation: Demonstration project results,” Journal of Soils and Sediments, vol. 9, no. 3, (2009), pp. 229–236. https://doi.org/10.1007/s11368-009-0067-z
DOI: https://doi.org/10.1007/s11368-009-0067-z
Palansooriya K. N. et al., “Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review,” Environment International, vol. 134, no. June 2019, (2020), p. 105046. https://doi.org/10.1016/j.envint.2019.105046
DOI: https://doi.org/10.1016/j.envint.2019.105046
Janiszewska S. et al., “Przegląd metod oczyszczania gruntów i wód gruntowych in-situ,” Przeglad Geologiczny, vol. 65, no. 10, (2017), pp. 908–915.
Alzhanova G. Z. et al., “Development of Environmentally Clean Construction Materials Using Industrial Waste,” Materials, vol. 15(16), 2022, p. 5726. https://doi.org/10.3390/ma15165726
DOI: https://doi.org/10.3390/ma15165726
Navarro A. et al., “Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials,” Journal of Hazardous Materials, vol. 186, no. 2–3, 2011, pp. 1576–1585. https://doi.org/10.1016/J.JHAZMAT.2010.12.039
DOI: https://doi.org/10.1016/j.jhazmat.2010.12.039
Saadeldin R. and Siddiqua S., “Geotechnical characterization of a clay–cement mix,” Bulletin of Engineering Geology and the Environment, vol.72, 2013, pp. 601–608. https://doi.org/10.1007/s10064-013-0531-2
DOI: https://doi.org/10.1007/s10064-013-0531-2
Sun Y. et al., “The Effects of Portland and Sulphoaluminate Cements Solidification/ Stabilization on Semi-Dynamic Leaching of Heavy Metal from Contaminated Sediment,” Sustainability, vol. 14, 2022, 5681. https://doi.org/10.3390/su14095681.
DOI: https://doi.org/10.3390/su14095681
Means J. et al., Application of Solidification and Stabilization to Waste Materials. CRC-Press, 1995.
Bone B. D. et al., "Review of scientific literature on the use of stabilisation / solidification for the treatment of contaminated soil , solid waste and sludges", CLaIRE Guidance Bulletin Gualdlince, no. 1, January 2004, pp. 1-8. https://doi.org/10.13140/2.1.1055.6163
Guo B. et al., “The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments : A review,” Journal of Environmental Management, vol. 193, 2017, pp. 410–422. https://doi.org/10.1016/j.jenvman.2017.02.026
DOI: https://doi.org/10.1016/j.jenvman.2017.02.026
Sharma H. D. and Reddy K. R., “Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies,” Environment International, vol. 35, 2004, pp. 50–55.
Batchelor B., “Overview of waste stabilization with cement,” Waste Management, vol. 26, no. 7, 2006, pp. 689–698. https://doi.org/10.1016/j.wasman.2006.01.020
DOI: https://doi.org/10.1016/j.wasman.2006.01.020
Roy A. et al., “Solidification/stabilization of a heavy metal sludge by a Portland cement/fly ash binding mixture,” Hazardous Waste and Hazardous Materials, vol. 8, no. 1, 1991, pp. 33–41. https://doi.org/https://doi.org/10.1089/hwm.1991.8.33
DOI: https://doi.org/10.1089/hwm.1991.8.33
Lin S. L. et al., “Stabilization and solidification of lead in contaminated soils,” Journal of Hazardous Materials, vol. 48, no. 1–3, Jun. 1996, pp. 95–110. https://doi.org/10.1016/0304-3894(95)00143-3
DOI: https://doi.org/10.1016/0304-3894(95)00143-3
Sanchez F. et al., “Leaching of inorganic contaminants from cement-based waste materials as a result of carbonation during intermittent wetting,” Waste Management, vol. 22, no. 2, Jan. 2002, pp. 249–260. https://doi.org/10.1016/S0956-053X(01)00076-9
DOI: https://doi.org/10.1016/S0956-053X(01)00076-9
Yilmaz O. et al., “Comparison of Two Leaching Tests to Assess the Effectiveness of Cement-Based Hazardous Waste Solidification/Stabilization,” Turkish Journal of Engineering and Environmental Sciences, vol. 27(3), 2003, pp. 201-212.
Shawabkeh R. A., “Solidification and stabilization of cadmium ions in sand–cement–clay mixture,” Journal of Hazardous Materials, vol. 125, no. 1–3, Oct. 2005, pp. 237–243. https://doi.org/10.1016/J.JHAZMAT.2005.05.037
DOI: https://doi.org/10.1016/j.jhazmat.2005.05.037
Moon D. H. et al., “An assessment of Portland cement, cement kiln dust and class C fly ash for the immobilization of Zn in contaminated soils,” Environmental Earth Sciences, vol. 61, no. 8, 2010, pp. 1745–1750. https://doi.org/10.1007/s12665-010-0596-1
DOI: https://doi.org/10.1007/s12665-010-0596-1
Voglar G. E. and Leštan D., “Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder,” Journal of Hazardous Materials, vol. 178, no. 1–3, Jun. 2010, pp. 926–933. https://doi.org/10.1016/J.JHAZMAT.2010.02.026
DOI: https://doi.org/10.1016/j.jhazmat.2010.02.026
Kogbara R. B. et al., “Process Envelopes For Stabilised/Solidified Contaminated Soils: initiation work,” in Fifth International Conference on Environmental Science and Technology, Houston, Texas, USA, 2010. https://doi.org/10.13140/2.1.3481.7608
Kogbara R. B. et al., “PH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil,” Journal of Environmental Sciences (China), vol. 24, no. 9, Sep. 2012, pp. 1630–1638. https://doi.org/10.1016/S1001-0742(11)60991-1
DOI: https://doi.org/10.1016/S1001-0742(11)60991-1
Tariq A. and Yanful E. K., “A review of binders used in cemented paste tailings for underground and surface disposal practices,” Journal of Environmental Management, vol. 131, 2013, pp. 138–149. https://doi.org/10.1016/j.jenvman.2013.09.039
DOI: https://doi.org/10.1016/j.jenvman.2013.09.039
Du Y. J. et al., “Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil,” Journal of Hazardous Materials, vol. 271, Apr. 2014, pp. 131–140. https://doi.org/10.1016/J.JHAZMAT.2014.02.002
DOI: https://doi.org/10.1016/j.jhazmat.2014.02.002
Wei M.-L. et al., “Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils,” Environmental Science and Pollution Research, vol. 22, 2015, pp. 19473–19484. https://doi.org/10.1007/s11356-015-5133-z
DOI: https://doi.org/10.1007/s11356-015-5133-z
Perera A. and Al-Tabbaa A., “Stabilisation/Solidification Treatment and Remediation,” in Stabilisation/Solidification Treatment and Remediation, 23rd ch., 2005, pp. 181–191. https://doi.org/10.1201/9781439833933.ch23
DOI: https://doi.org/10.1201/9781439833933.ch23
Wang L. et al., “Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing,” Journal of Cleaner Production, vol. 137, Nov. 2016, pp. 861–870. https://doi.org/10.1016/J.JCLEPRO.2016.07.180
DOI: https://doi.org/10.1016/j.jclepro.2016.07.180
Morales L. et al., “Microbiological induced carbonate (CaCO3) precipitation using clay phyllites to replace chemical stabilizers (cement or lime),” Applied Clay Science, vol. 174, 2019, pp. 15–28. https://doi.org/10.1016/j.clay.2019.03.018
DOI: https://doi.org/10.1016/j.clay.2019.03.018
Mujah D. et al., “Microstructural and Geomechanical Study on Biocemented Sand for Optimization of MICP Process,” Journal of Materials in Civil Engineering, vol. 31, no. 4, 2019. https://doi.org/10.1061/(asce)mt.1943-5533.0002660
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660
Scrivener K. L. and Kirkpatrick R. J., “Innovation in use and research on cementitious material,” Cement and Concrete Research, vol. 38, no. 2, Feb. 2008, pp. 128–136. https://doi.org/10.1016/J.CEMCONRES.2007.09.025
DOI: https://doi.org/10.1016/j.cemconres.2007.09.025
Li W. et al., “Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils,” Science of the Total Environment, vol. 671, 2019, pp. 741–753. https://doi.org/10.1016/j.scitotenv.2019.03.270
DOI: https://doi.org/10.1016/j.scitotenv.2019.03.270
Kogbara R. B. et al., “Cement–fly ash stabilisation/solidification of contaminated soil: Performance properties and initiation of operating envelopes,” Applied Geochemistry, vol. 33, no. 2013, Jun. 2013, pp. 64–75. https://doi.org/10.1016/j.apgeochem.2013.02.001
DOI: https://doi.org/10.1016/j.apgeochem.2013.02.001
Akhter H. et al., “Immobilization of As, Cd, Cr and PB-containing soils by using cement or pozzolanic fixing agents,” Journal of Hazardous Materials, vol. 24, no. 2–3, Jan. 1990, pp. 145–155. https://doi.org/10.1016/0304-3894(90)87006-4
DOI: https://doi.org/10.1016/0304-3894(90)87006-4
Kong R. et al., “Stabilization of Loess Using Nano-SiO2,” Materials, vol. 11, no. 6, Jun. 2018, p. 1014. https://doi.org/10.3390/ma11061014
DOI: https://doi.org/10.3390/ma11061014
Ma Y. and Chen W., “Study on the Mechanism of Stabilizing Loess with Lime: Analysis of Mineral and Microstructure Evolution,” Advances in Civil Engineering, vol. 2021, May 2021, pp. 1–11. https://doi.org/10.1155/2021/6641496
DOI: https://doi.org/10.1155/2021/6641496
Liu Z. et al., “Feasibility Study of Loess Stabilization with Fly Ash–Based Geopolymer,” Journal of Materials in Civil Engineering, vol. 28, no. 5, (2016), pp. 1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0001490
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001490
Nepelski K. and Lal A., “CPT parameters of loess subsoil in Lublin area,” Applied Sciences, vol. 45, 2021, pp. 1–13. https://doi.org/10.3390/app11136020
DOI: https://doi.org/10.3390/app11136020
ASTM, “ASTM, 2006. Annual Book of ASTM Standards, 04.08. American Society for Testing and Materials, Philadelphi,” ASTM International, vol. 04, 2000, pp. 1–12.
Erdem M. and Özverdi A., “Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification,” Hydrometallurgy, vol. 105, no. 3–4, 2011, pp. 270–276. https://doi.org/10.1016/j.hydromet.2010.10.014
DOI: https://doi.org/10.1016/j.hydromet.2010.10.014
Goodarzi A. R. and Movahedrad M., “Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators,” Applied Geochemistry, vol. 81, 2017, pp. 155–165. https://doi.org/10.1016/j.apgeochem.2017.04.014
DOI: https://doi.org/10.1016/j.apgeochem.2017.04.014
Zhou Y. et al., “A combination method to study microbial communities and activities in zinc contaminated soil,” Journal of Hazardous Materials, vol. 169, no. 1–3, Sep. 2009, pp. 875–881. https://doi.org/10.1016/j.jhazmat.2009.04.027
DOI: https://doi.org/10.1016/j.jhazmat.2009.04.027