Hrčka R. et al., “Wood Thermal Properties”, in Wood in Civil Engineering, London: IntechOpen, 2017. https://doi.org/10.5772/65805
DOI: https://doi.org/10.5772/65805
Leng W. and Pan B., “Thermal Insulating and Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material”, Forests, vol. 10, no. 2, 2019, p. 200. https://doi.org/10.3390/f10020200
DOI: https://doi.org/10.3390/f10020200
Vay O. et al., “Thermal conductivity of wood at angles to the principal anatomical directions”, Wood Science and Technology, vol. 49, no. 3, 2015, pp. 577–589. https://doi.org/10.1007/s00226-015-0716-x
DOI: https://doi.org/10.1007/s00226-015-0716-x
Wu S.-S. et al., “Thermal Conductivity of Poplar Wood Veneer Impregnated with Graphene/Polyvinyl Alcohol”, Forests, vol. 12, no. 6, 2021, p. 777. https://doi.org/10.3390/f12060777
DOI: https://doi.org/10.3390/f12060777
Agoua E. et al., “Thermal conductivity of composites made of wastes of wood and expanded polystyrene”, Construction and Building Materials, vol. 41, 2013, pp. 557–562. https://doi.org/10.1016/j.conbuildmat.2012.12.016
DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.016
Sonderegger W. and Niemz P., “Thermal conductivity and water vapour transmission properties of wood-based materials”, European Journal of Wood and Wood Products, vol. 67, no. 3, 2009, pp. 313–321. https://doi.org/10.1007/s00107-008-0304-y
DOI: https://doi.org/10.1007/s00107-008-0304-y
Siciliano A. P. et al., “Sustainable Wood-Waste-Based Thermal Insulation Foam for Building Energy Efficiency”, Buildings, vol. 13, no. 4, 2023, p. 840. https://doi.org/10.3390/buildings13040840
DOI: https://doi.org/10.3390/buildings13040840
Bayani S. et al., “Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose”, Polymers, vol. 11, no. 10, 2019, p. 1538. https://doi.org/10.3390/polym11101538
DOI: https://doi.org/10.3390/polym11101538
Díaz A. R. et al., “Multiscale modeling of the thermal conductivity of wood and its application to cross-laminated timber”, International Journal of Thermal Sciences, vol. 144, 2019, pp. 79–92. https://doi.org/10.1016/j.ijthermalsci.2019.05.016
DOI: https://doi.org/10.1016/j.ijthermalsci.2019.05.016
Taoukil D. et al., “Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite”, Construction and Building Materials, vol. 48, 2013, pp. 104–115. https://doi.org/10.1016/j.conbuildmat.2013.06.067
DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.067
Sun H. et al., “Lightweight, Anisotropic, Compressible, and Thermally-Insulating Wood Aerogels with Aligned Cellulose Fibers”, Polymers, vol. 12, no. 1, 2020, p. 165. https://doi.org/10.3390/polym12010165
DOI: https://doi.org/10.3390/polym12010165
Influence of air humidity and temperature on thermal conductivity of wood-based materials[12].
Taghiyari H. R. et al., “Improving Thermal Conductivity Coefficient in Oriented Strand Lumber (OSL) Using Sepiolite”, Nanomaterials, vol. 10, no. 4, 2020, p. 599. https://doi.org/10.3390/nano10040599
DOI: https://doi.org/10.3390/nano10040599
Trochonowicz M. et al., “Impact analysis of humidity and temperature on the value of thermal conductivity λ coefficient of insulating materials used inside buildings”, Budownictwo i Architektura, vol. 12, no. 4, 2013, pp. 165–176. https://doi.org/10.35784/bud-arch.1972
DOI: https://doi.org/10.35784/bud-arch.1972
Rowell R., Handbook Of Wood Chemistry And Wood Composites. 2nd ed. London: Taylor and Fancis Group, 2012. https://doi.org/10.1201/b12487
DOI: https://doi.org/10.1201/b12487
Asako Y. et al., “Effective thermal conductivity of compressed woods”, International Journal of Heat and Mass Transfer, vol. 45, no. 11, (May 2002), pp. 2243–2253. https://doi.org/10.1016/S0017-9310(01)00330-1
DOI: https://doi.org/10.1016/S0017-9310(01)00330-1
Matias L. et al., “Declared value for the thermal conductivity coefficient of insulation corkboard”, Wood Science and Technology, vol. 31, no. 5, 1997, pp. 355–365. https://doi.org/10.1007/BF01159154
DOI: https://doi.org/10.1007/s002260050042
Saavedra Flores E. I. et al., “Analysis of cross-laminated timber by computational homogenisation and experimental validation”, Composite Structures, vol. 121, (Mar. 2015), pp. 386–394. https://doi.org/10.1016/j.compstruct.2014.11.042
DOI: https://doi.org/10.1016/j.compstruct.2014.11.042
User Manual for the Laser Comp FOX 314 Instrument.
EN 12524:2000 Building materials and products - Hygrothermal properties - Tabulated design values.
EN ISO 10456:2009 Building materials and products — Hygrothermal properties — Tabulated design values and procedures for determining declared and design thermal values.