Interlocking passive brick set: the design of interlocking building components with connecting air cavities for heat dissipation and as a complement to the Heating, Ventilation, and Air Conditioning (HVAC) system
Article Sidebar
Open full text
Issue Vol. 23 No. 4 (2024)
-
Architecture of the administrative centre of Kharkiv, the capital – laboratory for the creation of the New Man: from concept to implementation
Kateryna Didenko, Olena Gella005-023
-
Difficulties in rebuilding historic bridges after conflicts: the case of the Mosul stone bridge
Emad Ismaeel, Mahmood Alabaachi024-040
-
Dynamic similarity criteria for simple cases of buildings and structures aerodynamics
Andrzej Flaga, Łukasz Flaga041-062
-
Concrete production using marble powder and marble coarse aggregates: an analysis of mechanical properties and sustainability
Saloua Filali, Abdelkader Nasser063-081
-
Evaluation of lime plaster on masonry walls in historical buildings prior to renovation
Adrian Chajec, Anna Hoła, Jerzy Hoła, Łukasz Sadowski083-090
-
Interlocking passive brick set: the design of interlocking building components with connecting air cavities for heat dissipation and as a complement to the Heating, Ventilation, and Air Conditioning (HVAC) system
Kongphat Phaiboonnukulkij091-111
-
Methods for conducting analysis, planning, and preservation of the historical and cultural potential of urban riverside areas
Liudmyla Ruban113-127
-
Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement
Abdelkader Fidjah, Mohamed Rabehi, Cheikh Kezrane, Asma Bendeb, Nour Elhouda Smain, Rachid Khalili129-149
-
The use of digital technologies in assessing the technical condition of historic structures
Bartosz Szostak, Michał Wac151-172
-
Management of energy renovation for traditional rural residential houses
Magdalena Szarejko173-190
-
Control of building safety through snow load monitoring
Roman Kinasz, Wiesław Bereza191-204
Archives
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
Main Article Content
DOI
Authors
kongphatphaiboonnukulkij@gmail.com
Abstract
This dissertation explores the design and implementation of the "Interlocking Passive Brick Set," a building component aimed at enhancing thermal efficiency and optimising the performance of Heating, Ventilation, and Air Conditioning (HVAC) systems. The bricks demonstrate thermal resistance and low thermal transmittance, reflecting their ability to manage heat flow and dissipation effectively. The research focuses on the interaction between the exterior and interior surfaces of the brick set, where the exterior is exposed to a hot environment, and the interior remains cooler. The design incorporates a central air cavity with lower thermal transmittance than solid surfaces. This cavity facilitates a heat dissipation cycle: hotter air rises and is expelled through the top compartment, while cooler air descends, cooling the space. This convective process enhances the overall thermal regulation within the structure. The data explain the discrepancy between predicted and measured thermal performance in interlocking brick systems and how the integrated air cavity addresses these issues. Heat-flux measurements were correlated in a general form to enable designers to account for convection at both the interior and exterior surfaces.
Keywords:
References
[1] Alongi A., Mazzarella L., “Characterization of fibrous insulating materials in their application in dynamic insulation technology”, Energy Procedia, vol. 78, (2015), 537-542. https://doi.org/10.1016/j.egypro.2015.11.732 DOI: https://doi.org/10.1016/j.egypro.2015.11.732
[2] Alongi A., Mazzarella L., “The dual air vented thermal box: a laboratory apparatus to test air permeable building envelope technologies”, Energy Procedia, vol. 78, (2015), 1543-1548. https://doi.org/10.1016/j.egypro.2015.11.198 DOI: https://doi.org/10.1016/j.egypro.2015.11.198
[3] Cojocaru A., Mares O., Tatomirescu D., Popescu A.,“The influence of Marangoni convection and of the external temperature gradient on the temperature fluctuations in a Czochralski solar silicon process”, AIP Conference Proceedings, 2218, (2020), 040006. https://doi.org/10.1063/5.0001053 DOI: https://doi.org/10.1063/5.0001053
[4] Dalehaug A., Fukushima H., Yoshinori., “Dynamic insulation in a wall”, Report Collection of Architectural Institute of Japan, vol. 66, (1993), 261-264.
[5] Delouei A. A., Sajjadi H., Ahmadi G.,“Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation”, Water, vol. 14(24), (2022), 4000. https://doi.org/10.3390/w14244000 DOI: https://doi.org/10.3390/w14244000
[6] Gizzatullina E., Baymetova E., Hval'ko M., Armyanin A., “Parametric study of convective heat exchange in cooling system”, Himičeskaâ fizika i mezoskopiâ, vol. 23(4), (2021), 392-402. https://doi.org/10.15350/17270529.2021.4.35 DOI: https://doi.org/10.15350/17270529.2021.4.35
[7] Jeslin A. J., Padmanaban I., “Experimental studies on interlocking block as wall panels”, Materials Today: Proceedings, vol. 21(1), (2020), 1-6. https://doi.org/10.1016/j.matpr.2019.05.294 DOI: https://doi.org/10.1016/j.matpr.2019.05.294
[8] Thakur A. K., Sathyamurthy R., Velraj R., Saidur R., Pandey A. K., Ma Z., Singh P., Hazra S. K., Sharshir S. W., Prabakaran R., Kim S. C., Panchal S., Ali M. H., “A state-of-the art review on advancing battery thermal management systems for fast-charging”, Applied Thermal Engineering, vol. 226, (2023), 120303. https://doi.org/10.1016/j.applthermaleng.2023.120303 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120303
[9] Keven A., “Exergy analyses of vehicles air conditioning systems for different refrigerants”, International Journal of Computational and Experimental Science and Engineering, vol. 9(1), (2023), 20-28. DOI: https://doi.org/10.22399/ijcesen.1258770
[10] Alaloul W. S., John V. O., Musarat M. A.,“Mechanical and thermal properties of interlocking bricks utilizing wasted polyethylene terephthalate”, International Journal of Concrete Structures and Materials, vol. 14, (2020), 1-11. https://doi.org/10.1186/s40069-020-00399-9 DOI: https://doi.org/10.1186/s40069-020-00399-9
[11] Arago F., Biographies of distinguished scientific men, London, 1857.
[12] Qin B., Zhu Y., Zhou Y., Qiu M., Li Q., “Whole-infrared-band camouflage with dual-band radiative heat dissipation”, Light: Science & Applications, vol. 12, (2023), 246. https://doi.org/10.1038/s41377-023-01287-z DOI: https://doi.org/10.1038/s41377-023-01287-z
[13] Taylor B. J., Cawthorne D. A., Imbabi M. S.,“Analytical investigation of the steady-state behaviour of dynamic and diffusive building envelopes”, Building and Environment, vol. 31(6), (1996), 519–525. https://doi.org/10.1016/0360-1323(96)00022-4 DOI: https://doi.org/10.1016/0360-1323(96)00022-4
[14] Bağcı Ö., Dukhan N., Kavurmacioğlu L. A., Forced-convection measurements in the fully developed and exit regions of open – cell metal foam”, Transport in Porous Media, vol. 109, (2015), 513-526. https://doi.org/10.1007/s11242-015-0534-5 DOI: https://doi.org/10.1007/s11242-015-0534-5
[15] Xi C., Cao S. J., “Challenges and future development paths of low carbon building design: a review”, Buildings, vol. 12(2), (2022), 163. https://doi.org/10.3390/buildings12020163 DOI: https://doi.org/10.3390/buildings12020163
[16] Cajamarca-Zuniga D., Kabantsev O. V., Campos D., “Geometric characterization of solid ceramic bricks for construction in Ecuador”, Structural Mechanics of Engineering Constructions and Buildings”, vol. 19(3), (2023), 329-336. https://doi.org/10.22363/1815-5235-2023-19-3-329-336 DOI: https://doi.org/10.22363/1815-5235-2023-19-3-329-336
[17] Gardner D., Lark R., Jefferson T., Davies R., “A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials”, Case Studies in Construction Materials, vol. 8 (2018), 238-247. https://doi.org/10.1016/j.cscm.2018.02.002 DOI: https://doi.org/10.1016/j.cscm.2018.02.002
[18] Di Giuseppe E., D’Orazio M., Di Perna C., “Thermal and filtration performance assessment of a dynamic insulation system”, Energy Procedia, vol. 78, (2015), 513–518. https://doi.org/10.1016/j.egypro.2015.11.721 DOI: https://doi.org/10.1016/j.egypro.2015.11.721
[19] Ascione F., Bianco N., De Stasio C., Mauro G. M., Vanoli G.P., “Dynamic insulation of the building envelope: numerical modeling under transient conditions and coupling with nocturnal free cooling”, Applied Thermal Engineering, vol. 84, (2015), 1-14. https://doi.org/10.1016/j.applthermaleng.2015.03.039 DOI: https://doi.org/10.1016/j.applthermaleng.2015.03.039
[20] d’Ambrosio Alfano F. D., Ficco G., Frattolillo A., Palella B. I., Riccio G., “Mean radiant temperature measurements through small black globes under forced convection conditions”, Atmosphere, vol. 12(5), (2021), 621. https://doi.org/10.3390/atmos12050621 DOI: https://doi.org/10.3390/atmos12050621
[21] Wu F., Hu P., Hu F., Tian Z., Tang J., Zhang P., Pan L., Barsoum M. W., Cai L., Sun Z., “Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation”. Nano-Micro Letters, vol 15, (2023), 194. https://doi.org/10.1007/s40820-023-01158-7 DOI: https://doi.org/10.1007/s40820-023-01158-7
[22] Field N. N., di Ciano M., Gerlich A. P., Daun K. J.,“Tailoring by direct contact heating during hot forming/die quenching”, Metallurgical and Materials Transactions A, vol. 50, (2019), 3705-3713. https://doi.org/10.1007/s11661-019-05283-0 DOI: https://doi.org/10.1007/s11661-019-05283-0
[23] Fourier M., Théorie analytique de la chaleur, University of Lausanne, 1822.
[24] Latha G.M., Santhanakumar P., “Seismic response of reduced – scale modular block and rigid faced reinforced walls through shaking table tests”, Geotextiles and Geomembranes, vol. 43, (2015), 307–316. https://doi.org/10.1016/j.geotexmem.2015.04.008 DOI: https://doi.org/10.1016/j.geotexmem.2015.04.008
[25] Gao M., An D. N., Parks J. M., Skolnick J., “AF2Complex predicts direct physical interactions in multimeric proteins with deep learning”, Nature Communications, vol. 13(1), (2022), 1744. https://doi.org/13.10.1038/s41467-022-29394-2 DOI: https://doi.org/10.1038/s41467-022-29394-2
[26] Ahmed H., Sugini, “A study on interlocking brick innovation using recycled plastic waste to support the acoustic and thermal performance of a building”, ARTEKS Jurnal Teknik Arsitektur, vol. 6(3), (2021), 335-348. https://doi.org/10.30822/arteks.v6i3.760 DOI: https://doi.org/10.30822/arteks.v6i3.760
[27] Bartussek H., Porenluftung, eine zugfreie Stalluftung (Pore ventilation, draft-free ventilation for barns), Die Landtech. Z. (DLZ) 32 (1), 1981.
[28] Bartussek H., “Luftdurchlässige Konstruktionen. Eine übersicht über den Standder Entwicklung (Air-permeable constructions: a state-of-the-art review)”, Schweizer Ingenieur und Architekt, vol. 104, (1986), 725–733.
[29] Chaib H., Kriker A.,“Thermal study of traditional gypsum plaster brick prototypes: the case of ouargla”, Selected Scientific Papers – Journal of Civil Engineering, vol. 17(1), (2022), 1-13. https://doi.org/10.2478/sspjce-2022-0019 DOI: https://doi.org/10.2478/sspjce-2022-0019
[30] Yin H., Zhou X., Zhou Z., Liu R., Mo X., Chen Z., Yang E., Huang Z., Li H., Wu H., Zhou J., Long Y., Hu B., “Switchable Kirigami structures as window envelopes for energy-efficient buildings”, Research, vol. 6, (2023), 0103. https://doi.org/10.34133/research.0103 DOI: https://doi.org/10.34133/research.0103
[31] Budaiwi I., Abdou A., Al-Homoud M., “Variations of thermal conductivity of insulation materials under different operating temperatures: impact on envelope-induced cooling load”, Journal of Architectural Engineering, vol. 8(4), (2002), 125-132. https://doi.org/10.1061/(ASCE)1076-0431(2002)8:4(125) DOI: https://doi.org/10.1061/(ASCE)1076-0431(2002)8:4(125)
[32] Benyahia K., Gomes S., André J. C., Qi H. J., Demoly F., “Influence of interlocking blocks assembly on the actuation time, shape change, and reversibility of voxel-based multi-material 4D structures”, Smart Materials and Structures, vol. 32(6) (2023), 065011. https://doi.org/10.1088/1361-665X/acd092 DOI: https://doi.org/10.1088/1361-665X/acd092
[33] Woodbury K., Najafi H., de Monte F., Beck J. V., Inverse heat conduction: III‐posed problems, John Wiley & Sons, Inc., 2023. https://doi.org/10.1002/9781119840220 DOI: https://doi.org/10.1002/9781119840220
[34] Park K.-S., Kim S.-W., Yoon S.-H., “Application of breathing architectural members to the natural ventilation of a passive solar house”, Energies, 9(3), (2016), 214. https://doi.org/10.3390/en9030214 DOI: https://doi.org/10.3390/en9030214
[35] Korobiichuk, I., Mel'nick, V., Shybetskyi, V., Kostyk, S., & Kalinina, M. F., “Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD”, Energies, vol. 15(4), (2022), 1430. https://doi.org/10.3390/en15041430 DOI: https://doi.org/10.3390/en15041430
[36] Peng L., Yu H., Chen C., He Q., Zhang H., Zhao F., Qin M., Feng Y., Feng W., “Tailoring dense, orientation–tunable, and interleavedly structured carbon-based heat dissipation plates”, Advanced Science, vol. 10, (2023), 2205962. https://doi.org/10.1002/advs.202205962 DOI: https://doi.org/10.1002/advs.202205962
[37] Solovyov L., Solovyov A., “The effect of asymmetry of the loading cycle on heat dissipation in metal structures”, IOP Conference Series: Materials Science and Engineering, vol. 760, (2020), 012055. https://doi.org/10.1088/1757-899X/760/1/012055 DOI: https://doi.org/10.1088/1757-899X/760/1/012055
[38] Ali M., Briet R., Chouw N., “Dynamic response of mortar – free interlocking structures”, Construction and Building Materials, vol. 42, (2013), 168-189. https://doi.org/10.1016/j.conbuildmat.2013.01.010 DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.010
[39] Firrdhaus Mohd-Sahabuddin M., Dahlan A. S., Jamil A. M., Muhammad-Sukki F., “Dynamic insulation systems to control airborne transmission of viruses in classrooms: a review of ‘airhouse’ concept”, Jurnal Kejuruteraan, vol. 35(3), (2023), 567-576. https://doi.org/10.17576/jkukm-2023-35%283%29-04 DOI: https://doi.org/10.17576/jkukm-2023-35(3)-04
[40] Fawaier M., Bokor B., “Dynamic insulation systems of building envelopes: a review”, Energy and Buildings, vol. 270, (2022), 112268. https://doi.org/10.1016/j.enbuild.2022.112268 DOI: https://doi.org/10.1016/j.enbuild.2022.112268
[41] Maruyama S., Moriya S.,“Newton's law of cooling: follow up and exploration”, International Journal of Heat and Mass Transfer, vol. 16, (2021), 120544. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
[42] Chaimoon N., Lertsatitthanakorn C., Chaimoon K., “Performance and economic comparative study of interlocking block and clay brick buildings”, Applied Mechanics and Materials, vols. 405-408, (2013), 2893-2898. https://doi.org/10.4028/www.scientific.net/AMM.405-408.2893 DOI: https://doi.org/10.4028/www.scientific.net/AMM.405-408.2893
[43] Newton F. R. S.,“VII. Scala graduum caloris”, Philosophical Transactions of the Royal Society of London, vol. 22(270), (1701), 824-829. DOI: https://doi.org/10.1098/rstl.1700.0082
[44] Fard Z. Q., Zomorodian Z. S., Korsavi S. S., “Application of machine learning in thermal comfort studies: a review of methods, performance and challenges”, Energy and Buildings, vol. 256, (2021), 111771. https://doi.org/10.1016/j.enbuild.2021.111771 DOI: https://doi.org/10.1016/j.enbuild.2021.111771
[45] Pereira R. C. A., da Silva O. S. Jr., de Mello Bandeira R. A., dos Santos M., de Souza Rocha C. Jr., Castillo C. d. S., Gomes C. F. S., de Moura Pereira D. A., Muradas F. M., “Evaluation of smart sensors for subway electric motor escalators through AHP-Gaussian method”, Sensors, vol. 23, (2023), 4131. https://doi.org/10.3390/s23084131 DOI: https://doi.org/10.3390/s23084131
[46] Li R., Yin Z., Lin H., “Research status and prospects for the utilization of lead-zinc tailings as building materials”, Buildings, vol. 13(1), (2023), 150. https://doi.org/10.3390/buildings13010150 DOI: https://doi.org/10.3390/buildings13010150
[47] Howell J.R., Siegel R., Pinar Mengüç M., Thermal radiation heat transfer, CRC Press, 2020. DOI: https://doi.org/10.1201/9780429327308
[48] Alrwashdeh S. S., Ammari H., Madanat M. A., Al-Falahat A. M., “The effect of heat exchanger design on heat transfer rate and temperature distribution”, Emerging Science Journal, vol. 6(1), (2022), 128-137. https://doi.org/10.28991/ESJ-2022-06-01-010 DOI: https://doi.org/10.28991/ESJ-2022-06-01-010
[49] Ingebretsen S. B., Andenæs E., Kvande T., “Microclimate of air cavities in ventilated roof and façade systems in nordic climates”, Buildings, vol. 12, (2022), 683. https://doi.org/10.3390/buildings12050683 DOI: https://doi.org/10.3390/buildings12050683
[50] Kim S., Lorente S., Bejan A., “Vascularized materials with heating from one side and coolant forced from the other side”, International Journal Heat Mass Transfer, vol. 50(17-18), (2007), 3498-3506. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.020 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.020
[51] Murata S., Tsukidate T., Fukushima A., Abuku M., Watanabe H., Ogawa A., “Periodic alternation between intake and exhaust of air in dynamic insulation: measurements of heat and moisture recovery efficiency”, Energy Procedia, vol. 78, (2015), 531-536. https://doi.org/10.1016/j.egypro.2015.11.731 DOI: https://doi.org/10.1016/j.egypro.2015.11.731
[52] Sadri S., Mohseni S., “Investigation of kalina cycle for power generation from heat dissipation of tarasht power plant”, International Journal of Thermodynamic, vol. 26(2), (2023), 57-63. https://doi.org/10.5541/ijot.1214617 DOI: https://doi.org/10.5541/ijot.1214617
[53] Uvsløkk S., Selvuttørkingsmekanismer for kompakte tak (Even drying mechanisms for compact roofs), tech. rep., SINTEF, Norway, 2008.
[54] Verma S., Singh H., “Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels”, International Journal of Thermal Sciences, vol. 171, (2022), 107245. https://doi.org/10.1016/j.ijthermalsci.2021.107245 DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107245
[55] Koenders S. J. M., Loonen R. C. G. M., Hensen J. L. M., “Investigating the potential of a closed-loop dynamic insulation system for opaque building elements”, Energy and Buildings, vol. 173, (2018), 409-427. https://doi.org/10.1016/j.enbuild.2018.05.051 DOI: https://doi.org/10.1016/j.enbuild.2018.05.051
[56] Dai W., Ren X.-J., Yan Q., Wang S., Yang M., Lv L., Ying J., Chen L., Tao P., Sun L., Xue C., Yu J., Song C., Nishimura K., Jiang N., Lin C., “Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction”, Nano-Micro Letters, vol. 15, (2022), 9. https://doi.org/10.1007/s40820-022-00979-2 DOI: https://doi.org/10.1007/s40820-022-00979-2
[57] Whewell W., History of the inductive sciences from the earliest to the present times, (first published 1866), Cambridge University Press, 2010. DOI: https://doi.org/10.1017/CBO9780511734335
[58] Palios X., Fardis M. N., Strepelias E., Bousias S. N., “Unbonded brickwork for the protection of infills from seismic damage”, Engineering Structural, vol. 131, (2016), 614-624. https://doi.org/10.1016/j.engstruct.2016.10.027 DOI: https://doi.org/10.1016/j.engstruct.2016.10.027
[59] Tang Y., Cao J., Wang S., “Experimental research on thermal performance of ultra-thin flattened heat pipes”, Journal of Thermal Science, vol. 31, (2022), 2346-2362. https://doi.org/10.1007/s11630-022-1710-x DOI: https://doi.org/10.1007/s11630-022-1710-x
[60] Totoev Y., Al Harthyv A., “Semi interlocking masonry as infill wall system for earthquake resistant buildings: a review”, The Journal Engineering Research (TJER), vol. 13(1), (2016), 33-41. https://doi.org/10.24200/tjer.vol13iss1pp33-41 DOI: https://doi.org/10.24200/tjer.vol13iss1pp33-41
[61] Zhang Y., Yang J., Hou X., Li G., Wang L., Bai N., Cai M., Zhao L., Wang Y., Zhang J., Chen K., Wu X., Yang C., Dai Y., Zhang Z., Guo C., “Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces”, Nature Communications, vol. 13, (2022), 1317. https://doi.org/10.1038/s41467-022-29093-y DOI: https://doi.org/10.1038/s41467-022-29093-y
[62] Tang Z., Ali M., Chouw N., “Residual compressive and shear strengths of novel coconut – fibre- reinforced – concrete interlocking blocks”, Construction Building Material, vol. 66, (2014), 533-540. https://doi.org/10.1016/j.conbuildmat.2014.05.094 DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.094
[63] Wang Z., Zhang T., Wang J., Yang G., Li M., Wu G., “The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites”, Nanomaterials, vol. 12, (2022), 446. https://doi.org/10.3390/nano12030446 DOI: https://doi.org/10.3390/nano12030446
[64] Zhang Z., Zhang N., Yuan Y., Phelan P. E., Attia S., “Thermal performance of a dynamic insulation-phase change material system and its application in multilayer hollow walls”, Journal of Energy Storage, vol. 62, (2023), 106912. https://doi.org/10.1016/j.est.2023.106912 DOI: https://doi.org/10.1016/j.est.2023.106912
[65] Olu-Ajayi R., Alaka H., Owolabi H., Àkànbí L., Ganiyu S., “Data-driven tools for building energy consumption prediction: a review”, Energies, vol. 16(6), 2023, 2574. https://doi.org/10.3390/en16062574 DOI: https://doi.org/10.3390/en16062574
[66] Zhu L., Tian L., Jiang S., Han L., Liang Y., Li Q., Chen S., “Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling”, Chemical Society Reviews, vol. 52, (2023), 7389-7460. https://doi.org/10.1039/D3CS00500C DOI: https://doi.org/10.1039/D3CS00500C
[67] Bangsbo J., “Energy demands in competitive soccer”, Sports Sciences, vol. 12(S5-12), (2019). https://doi.org/10.1080/02640414.1994.12059272 DOI: https://doi.org/10.1080/02640414.1994.12059272
[68] Wang Q., Zhang F., Li R., “Free trade and carbon emissions revisited: The asymmetric impacts of trade diversification and trade openness”, Sustainable Development, vol. 32(1), (2023), 876-901. https://doi.org/10.1002/sd.2703 DOI: https://doi.org/10.1002/sd.2703
[69] Samsi S., Zhao D., McDonald J., Li B., Michaleas A., Jones M., Bergeron W., Kepner J., Tiwari D., Gadepally V., “From words to watts: benchmarking the energy costs of large language model inference”, in 2023 IEEE High Performance Extreme Computing Conference (HPEC), 25 December 2023, Boston, MA, USA. https://doi.org/10.1109/HPEC58863.2023.10363447 DOI: https://doi.org/10.1109/HPEC58863.2023.10363447
[70] Budiyani A. G., Prastyatama B., “Evaluation and experiment of interlocking brick module design to obtain varieties of ventilation opening area on wall”, Riset Arsitektur (RISA), vol. 4(03), (2020), 269-287. https://doi.org/10.26593/risa.v4i03.3932.269-287 DOI: https://doi.org/10.26593/risa.v4i03.3932.269-287
[71] Garriga S. M., Dabbagh M., Krarti M., “Evaluation of dynamic insulation systems for residential buildings in Barcelona, Spain”, ASME Journal of Engineering for Sustainable Buildings and Cities, vol. 1(1), (2020), 011002. https://doi.org/10.1115/1.4045144 DOI: https://doi.org/10.1115/1.4045144
[72] Liu S., Du Y., Zhang R., He H., Pan A., Ho T. C., Zhu Y., Li Y., Yip H.-L., Jen A. K. Y., Tso C. Y., “Perovskite smart windows: the light manipulator in energy-efficient buildings”, Advanced Materials, vol. 36(17), (2023), 2306423. https://doi.org/10.1002/adma.202306423 DOI: https://doi.org/10.1002/adma.202306423
[73] Mosadeghrad A., Isfahani P., Eslambolchi L., Zahmatkesh M., Afshari M., “Strategies to strengthen a climate-resilient health system: a scoping review”, Globalization and Health, vol. 19, (2023), 62. https://doi.org/10.1186/s12992-023-00965-2 DOI: https://doi.org/10.1186/s12992-023-00965-2
[74] Li K., Zhang Y., Liu X., Gao J., Gao B., “An adaptive optimization control strategy for advanced engine thermal management systems”, in 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 2021, 1-5. https://doi.org/10.1109/CVCI54083.2021.9661207 DOI: https://doi.org/10.1109/CVCI54083.2021.9661207
[75] Holsman K. K., Climate change 2022 – impacts, adaptation and vulnerability, Cambridge University Press, 2023. https://doi.org/10.1017/9781009325844 DOI: https://doi.org/10.1017/9781009325844
[76] Setaki F., van Timmeren A., “Disruptive technologies for a circular building industry”, Building and Environment, vol. 223, (2022), 109394. https://doi.org/10.1016/j.buildenv.2022.109394 DOI: https://doi.org/10.1016/j.buildenv.2022.109394
Article Details
Abstract views: 310
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
