Interlocking passive brick set: the design of interlocking building components with connecting air cavities for heat dissipation and as a complement to the Heating, Ventilation, and Air Conditioning (HVAC) system
Kongphat Phaiboonnukulkij
kongphatphaiboonnukulkij@gmail.comChulalongkorn University' (Thailand)
https://orcid.org/0009-0009-9932-5940
Abstract
This dissertation explores the design and implementation of the "Interlocking Passive Brick Set," a building component aimed at enhancing thermal efficiency and optimising the performance of Heating, Ventilation, and Air Conditioning (HVAC) systems. The bricks demonstrate thermal resistance and low thermal transmittance, reflecting their ability to manage heat flow and dissipation effectively. The research focuses on the interaction between the exterior and interior surfaces of the brick set, where the exterior is exposed to a hot environment, and the interior remains cooler. The design incorporates a central air cavity with lower thermal transmittance than solid surfaces. This cavity facilitates a heat dissipation cycle: hotter air rises and is expelled through the top compartment, while cooler air descends, cooling the space. This convective process enhances the overall thermal regulation within the structure. The data explain the discrepancy between predicted and measured thermal performance in interlocking brick systems and how the integrated air cavity addresses these issues. Heat-flux measurements were correlated in a general form to enable designers to account for convection at both the interior and exterior surfaces.
Keywords:
passive brick se, heat dissipation, HVACReferences
[1] Alongi A., Mazzarella L., “Characterization of fibrous insulating materials in their application in dynamic insulation technology”, Energy Procedia, vol. 78, (2015), 537-542. https://doi.org/10.1016/j.egypro.2015.11.732
Google Scholar
[2] Alongi A., Mazzarella L., “The dual air vented thermal box: a laboratory apparatus to test air permeable building envelope technologies”, Energy Procedia, vol. 78, (2015), 1543-1548. https://doi.org/10.1016/j.egypro.2015.11.198
Google Scholar
[3] Cojocaru A., Mares O., Tatomirescu D., Popescu A.,“The influence of Marangoni convection and of the external temperature gradient on the temperature fluctuations in a Czochralski solar silicon process”, AIP Conference Proceedings, 2218, (2020), 040006. https://doi.org/10.1063/5.0001053
Google Scholar
[4] Dalehaug A., Fukushima H., Yoshinori., “Dynamic insulation in a wall”, Report Collection of Architectural Institute of Japan, vol. 66, (1993), 261-264.
Google Scholar
[5] Delouei A. A., Sajjadi H., Ahmadi G.,“Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation”, Water, vol. 14(24), (2022), 4000. https://doi.org/10.3390/w14244000
Google Scholar
[6] Gizzatullina E., Baymetova E., Hval'ko M., Armyanin A., “Parametric study of convective heat exchange in cooling system”, Himičeskaâ fizika i mezoskopiâ, vol. 23(4), (2021), 392-402. https://doi.org/10.15350/17270529.2021.4.35
Google Scholar
[7] Jeslin A. J., Padmanaban I., “Experimental studies on interlocking block as wall panels”, Materials Today: Proceedings, vol. 21(1), (2020), 1-6. https://doi.org/10.1016/j.matpr.2019.05.294
Google Scholar
[8] Thakur A. K., Sathyamurthy R., Velraj R., Saidur R., Pandey A. K., Ma Z., Singh P., Hazra S. K., Sharshir S. W., Prabakaran R., Kim S. C., Panchal S., Ali M. H., “A state-of-the art review on advancing battery thermal management systems for fast-charging”, Applied Thermal Engineering, vol. 226, (2023), 120303. https://doi.org/10.1016/j.applthermaleng.2023.120303
Google Scholar
[9] Keven A., “Exergy analyses of vehicles air conditioning systems for different refrigerants”, International Journal of Computational and Experimental Science and Engineering, vol. 9(1), (2023), 20-28.
Google Scholar
[10] Alaloul W. S., John V. O., Musarat M. A.,“Mechanical and thermal properties of interlocking bricks utilizing wasted polyethylene terephthalate”, International Journal of Concrete Structures and Materials, vol. 14, (2020), 1-11. https://doi.org/10.1186/s40069-020-00399-9
Google Scholar
[11] Arago F., Biographies of distinguished scientific men, London, 1857.
Google Scholar
[12] Qin B., Zhu Y., Zhou Y., Qiu M., Li Q., “Whole-infrared-band camouflage with dual-band radiative heat dissipation”, Light: Science & Applications, vol. 12, (2023), 246. https://doi.org/10.1038/s41377-023-01287-z
Google Scholar
[13] Taylor B. J., Cawthorne D. A., Imbabi M. S.,“Analytical investigation of the steady-state behaviour of dynamic and diffusive building envelopes”, Building and Environment, vol. 31(6), (1996), 519–525. https://doi.org/10.1016/0360-1323(96)00022-4
Google Scholar
[14] Bağcı Ö., Dukhan N., Kavurmacioğlu L. A., Forced-convection measurements in the fully developed and exit regions of open – cell metal foam”, Transport in Porous Media, vol. 109, (2015), 513-526. https://doi.org/10.1007/s11242-015-0534-5
Google Scholar
[15] Xi C., Cao S. J., “Challenges and future development paths of low carbon building design: a review”, Buildings, vol. 12(2), (2022), 163. https://doi.org/10.3390/buildings12020163
Google Scholar
[16] Cajamarca-Zuniga D., Kabantsev O. V., Campos D., “Geometric characterization of solid ceramic bricks for construction in Ecuador”, Structural Mechanics of Engineering Constructions and Buildings”, vol. 19(3), (2023), 329-336. https://doi.org/10.22363/1815-5235-2023-19-3-329-336
Google Scholar
[17] Gardner D., Lark R., Jefferson T., Davies R., “A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials”, Case Studies in Construction Materials, vol. 8 (2018), 238-247. https://doi.org/10.1016/j.cscm.2018.02.002
Google Scholar
[18] Di Giuseppe E., D’Orazio M., Di Perna C., “Thermal and filtration performance assessment of a dynamic insulation system”, Energy Procedia, vol. 78, (2015), 513–518. https://doi.org/10.1016/j.egypro.2015.11.721
Google Scholar
[19] Ascione F., Bianco N., De Stasio C., Mauro G. M., Vanoli G.P., “Dynamic insulation of the building envelope: numerical modeling under transient conditions and coupling with nocturnal free cooling”, Applied Thermal Engineering, vol. 84, (2015), 1-14. https://doi.org/10.1016/j.applthermaleng.2015.03.039
Google Scholar
[20] d’Ambrosio Alfano F. D., Ficco G., Frattolillo A., Palella B. I., Riccio G., “Mean radiant temperature measurements through small black globes under forced convection conditions”, Atmosphere, vol. 12(5), (2021), 621. https://doi.org/10.3390/atmos12050621
Google Scholar
[21] Wu F., Hu P., Hu F., Tian Z., Tang J., Zhang P., Pan L., Barsoum M. W., Cai L., Sun Z., “Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation”. Nano-Micro Letters, vol 15, (2023), 194. https://doi.org/10.1007/s40820-023-01158-7
Google Scholar
[22] Field N. N., di Ciano M., Gerlich A. P., Daun K. J.,“Tailoring by direct contact heating during hot forming/die quenching”, Metallurgical and Materials Transactions A, vol. 50, (2019), 3705-3713. https://doi.org/10.1007/s11661-019-05283-0
Google Scholar
[23] Fourier M., Théorie analytique de la chaleur, University of Lausanne, 1822.
Google Scholar
[24] Latha G.M., Santhanakumar P., “Seismic response of reduced – scale modular block and rigid faced reinforced walls through shaking table tests”, Geotextiles and Geomembranes, vol. 43, (2015), 307–316. https://doi.org/10.1016/j.geotexmem.2015.04.008
Google Scholar
[25] Gao M., An D. N., Parks J. M., Skolnick J., “AF2Complex predicts direct physical interactions in multimeric proteins with deep learning”, Nature Communications, vol. 13(1), (2022), 1744. https://doi.org/13.10.1038/s41467-022-29394-2
Google Scholar
[26] Ahmed H., Sugini, “A study on interlocking brick innovation using recycled plastic waste to support the acoustic and thermal performance of a building”, ARTEKS Jurnal Teknik Arsitektur, vol. 6(3), (2021), 335-348. https://doi.org/10.30822/arteks.v6i3.760
Google Scholar
[27] Bartussek H., Porenluftung, eine zugfreie Stalluftung (Pore ventilation, draft-free ventilation for barns), Die Landtech. Z. (DLZ) 32 (1), 1981.
Google Scholar
[28] Bartussek H., “Luftdurchlässige Konstruktionen. Eine übersicht über den Standder Entwicklung (Air-permeable constructions: a state-of-the-art review)”, Schweizer Ingenieur und Architekt, vol. 104, (1986), 725–733.
Google Scholar
[29] Chaib H., Kriker A.,“Thermal study of traditional gypsum plaster brick prototypes: the case of ouargla”, Selected Scientific Papers – Journal of Civil Engineering, vol. 17(1), (2022), 1-13. https://doi.org/10.2478/sspjce-2022-0019
Google Scholar
[30] Yin H., Zhou X., Zhou Z., Liu R., Mo X., Chen Z., Yang E., Huang Z., Li H., Wu H., Zhou J., Long Y., Hu B., “Switchable Kirigami structures as window envelopes for energy-efficient buildings”, Research, vol. 6, (2023), 0103. https://doi.org/10.34133/research.0103
Google Scholar
[31] Budaiwi I., Abdou A., Al-Homoud M., “Variations of thermal conductivity of insulation materials under different operating temperatures: impact on envelope-induced cooling load”, Journal of Architectural Engineering, vol. 8(4), (2002), 125-132. https://doi.org/10.1061/(ASCE)1076-0431(2002)8:4(125)
Google Scholar
[32] Benyahia K., Gomes S., André J. C., Qi H. J., Demoly F., “Influence of interlocking blocks assembly on the actuation time, shape change, and reversibility of voxel-based multi-material 4D structures”, Smart Materials and Structures, vol. 32(6) (2023), 065011. https://doi.org/10.1088/1361-665X/acd092
Google Scholar
[33] Woodbury K., Najafi H., de Monte F., Beck J. V., Inverse heat conduction: III‐posed problems, John Wiley & Sons, Inc., 2023. https://doi.org/10.1002/9781119840220
Google Scholar
[34] Park K.-S., Kim S.-W., Yoon S.-H., “Application of breathing architectural members to the natural ventilation of a passive solar house”, Energies, 9(3), (2016), 214. https://doi.org/10.3390/en9030214
Google Scholar
[35] Korobiichuk, I., Mel'nick, V., Shybetskyi, V., Kostyk, S., & Kalinina, M. F., “Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD”, Energies, vol. 15(4), (2022), 1430. https://doi.org/10.3390/en15041430
Google Scholar
[36] Peng L., Yu H., Chen C., He Q., Zhang H., Zhao F., Qin M., Feng Y., Feng W., “Tailoring dense, orientation–tunable, and interleavedly structured carbon-based heat dissipation plates”, Advanced Science, vol. 10, (2023), 2205962. https://doi.org/10.1002/advs.202205962
Google Scholar
[37] Solovyov L., Solovyov A., “The effect of asymmetry of the loading cycle on heat dissipation in metal structures”, IOP Conference Series: Materials Science and Engineering, vol. 760, (2020), 012055. https://doi.org/10.1088/1757-899X/760/1/012055
Google Scholar
[38] Ali M., Briet R., Chouw N., “Dynamic response of mortar – free interlocking structures”, Construction and Building Materials, vol. 42, (2013), 168-189. https://doi.org/10.1016/j.conbuildmat.2013.01.010
Google Scholar
[39] Firrdhaus Mohd-Sahabuddin M., Dahlan A. S., Jamil A. M., Muhammad-Sukki F., “Dynamic insulation systems to control airborne transmission of viruses in classrooms: a review of ‘airhouse’ concept”, Jurnal Kejuruteraan, vol. 35(3), (2023), 567-576. https://doi.org/10.17576/jkukm-2023-35%283%29-04
Google Scholar
[40] Fawaier M., Bokor B., “Dynamic insulation systems of building envelopes: a review”, Energy and Buildings, vol. 270, (2022), 112268. https://doi.org/10.1016/j.enbuild.2022.112268
Google Scholar
[41] Maruyama S., Moriya S.,“Newton's law of cooling: follow up and exploration”, International Journal of Heat and Mass Transfer, vol. 16, (2021), 120544. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120544
Google Scholar
[42] Chaimoon N., Lertsatitthanakorn C., Chaimoon K., “Performance and economic comparative study of interlocking block and clay brick buildings”, Applied Mechanics and Materials, vols. 405-408, (2013), 2893-2898. https://doi.org/10.4028/www.scientific.net/AMM.405-408.2893
Google Scholar
[43] Newton F. R. S.,“VII. Scala graduum caloris”, Philosophical Transactions of the Royal Society of London, vol. 22(270), (1701), 824-829.
Google Scholar
[44] Fard Z. Q., Zomorodian Z. S., Korsavi S. S., “Application of machine learning in thermal comfort studies: a review of methods, performance and challenges”, Energy and Buildings, vol. 256, (2021), 111771. https://doi.org/10.1016/j.enbuild.2021.111771
Google Scholar
[45] Pereira R. C. A., da Silva O. S. Jr., de Mello Bandeira R. A., dos Santos M., de Souza Rocha C. Jr., Castillo C. d. S., Gomes C. F. S., de Moura Pereira D. A., Muradas F. M., “Evaluation of smart sensors for subway electric motor escalators through AHP-Gaussian method”, Sensors, vol. 23, (2023), 4131. https://doi.org/10.3390/s23084131
Google Scholar
[46] Li R., Yin Z., Lin H., “Research status and prospects for the utilization of lead-zinc tailings as building materials”, Buildings, vol. 13(1), (2023), 150. https://doi.org/10.3390/buildings13010150
Google Scholar
[47] Howell J.R., Siegel R., Pinar Mengüç M., Thermal radiation heat transfer, CRC Press, 2020.
Google Scholar
[48] Alrwashdeh S. S., Ammari H., Madanat M. A., Al-Falahat A. M., “The effect of heat exchanger design on heat transfer rate and temperature distribution”, Emerging Science Journal, vol. 6(1), (2022), 128-137. https://doi.org/10.28991/ESJ-2022-06-01-010
Google Scholar
[49] Ingebretsen S. B., Andenæs E., Kvande T., “Microclimate of air cavities in ventilated roof and façade systems in nordic climates”, Buildings, vol. 12, (2022), 683. https://doi.org/10.3390/buildings12050683
Google Scholar
[50] Kim S., Lorente S., Bejan A., “Vascularized materials with heating from one side and coolant forced from the other side”, International Journal Heat Mass Transfer, vol. 50(17-18), (2007), 3498-3506. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.020
Google Scholar
[51] Murata S., Tsukidate T., Fukushima A., Abuku M., Watanabe H., Ogawa A., “Periodic alternation between intake and exhaust of air in dynamic insulation: measurements of heat and moisture recovery efficiency”, Energy Procedia, vol. 78, (2015), 531-536. https://doi.org/10.1016/j.egypro.2015.11.731
Google Scholar
[52] Sadri S., Mohseni S., “Investigation of kalina cycle for power generation from heat dissipation of tarasht power plant”, International Journal of Thermodynamic, vol. 26(2), (2023), 57-63. https://doi.org/10.5541/ijot.1214617
Google Scholar
[53] Uvsløkk S., Selvuttørkingsmekanismer for kompakte tak (Even drying mechanisms for compact roofs), tech. rep., SINTEF, Norway, 2008.
Google Scholar
[54] Verma S., Singh H., “Predicting the conductive heat transfer through evacuated perlite based vacuum insulation panels”, International Journal of Thermal Sciences, vol. 171, (2022), 107245. https://doi.org/10.1016/j.ijthermalsci.2021.107245
Google Scholar
[55] Koenders S. J. M., Loonen R. C. G. M., Hensen J. L. M., “Investigating the potential of a closed-loop dynamic insulation system for opaque building elements”, Energy and Buildings, vol. 173, (2018), 409-427. https://doi.org/10.1016/j.enbuild.2018.05.051
Google Scholar
[56] Dai W., Ren X.-J., Yan Q., Wang S., Yang M., Lv L., Ying J., Chen L., Tao P., Sun L., Xue C., Yu J., Song C., Nishimura K., Jiang N., Lin C., “Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction”, Nano-Micro Letters, vol. 15, (2022), 9. https://doi.org/10.1007/s40820-022-00979-2
Google Scholar
[57] Whewell W., History of the inductive sciences from the earliest to the present times, (first published 1866), Cambridge University Press, 2010.
Google Scholar
[58] Palios X., Fardis M. N., Strepelias E., Bousias S. N., “Unbonded brickwork for the protection of infills from seismic damage”, Engineering Structural, vol. 131, (2016), 614-624. https://doi.org/10.1016/j.engstruct.2016.10.027
Google Scholar
[59] Tang Y., Cao J., Wang S., “Experimental research on thermal performance of ultra-thin flattened heat pipes”, Journal of Thermal Science, vol. 31, (2022), 2346-2362. https://doi.org/10.1007/s11630-022-1710-x
Google Scholar
[60] Totoev Y., Al Harthyv A., “Semi interlocking masonry as infill wall system for earthquake resistant buildings: a review”, The Journal Engineering Research (TJER), vol. 13(1), (2016), 33-41. https://doi.org/10.24200/tjer.vol13iss1pp33-41
Google Scholar
[61] Zhang Y., Yang J., Hou X., Li G., Wang L., Bai N., Cai M., Zhao L., Wang Y., Zhang J., Chen K., Wu X., Yang C., Dai Y., Zhang Z., Guo C., “Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces”, Nature Communications, vol. 13, (2022), 1317. https://doi.org/10.1038/s41467-022-29093-y
Google Scholar
[62] Tang Z., Ali M., Chouw N., “Residual compressive and shear strengths of novel coconut – fibre- reinforced – concrete interlocking blocks”, Construction Building Material, vol. 66, (2014), 533-540. https://doi.org/10.1016/j.conbuildmat.2014.05.094
Google Scholar
[63] Wang Z., Zhang T., Wang J., Yang G., Li M., Wu G., “The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites”, Nanomaterials, vol. 12, (2022), 446. https://doi.org/10.3390/nano12030446
Google Scholar
[64] Zhang Z., Zhang N., Yuan Y., Phelan P. E., Attia S., “Thermal performance of a dynamic insulation-phase change material system and its application in multilayer hollow walls”, Journal of Energy Storage, vol. 62, (2023), 106912. https://doi.org/10.1016/j.est.2023.106912
Google Scholar
[65] Olu-Ajayi R., Alaka H., Owolabi H., Àkànbí L., Ganiyu S., “Data-driven tools for building energy consumption prediction: a review”, Energies, vol. 16(6), 2023, 2574. https://doi.org/10.3390/en16062574
Google Scholar
[66] Zhu L., Tian L., Jiang S., Han L., Liang Y., Li Q., Chen S., “Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling”, Chemical Society Reviews, vol. 52, (2023), 7389-7460. https://doi.org/10.1039/D3CS00500C
Google Scholar
[67] Bangsbo J., “Energy demands in competitive soccer”, Sports Sciences, vol. 12(S5-12), (2019). https://doi.org/10.1080/02640414.1994.12059272
Google Scholar
[68] Wang Q., Zhang F., Li R., “Free trade and carbon emissions revisited: The asymmetric impacts of trade diversification and trade openness”, Sustainable Development, vol. 32(1), (2023), 876-901. https://doi.org/10.1002/sd.2703
Google Scholar
[69] Samsi S., Zhao D., McDonald J., Li B., Michaleas A., Jones M., Bergeron W., Kepner J., Tiwari D., Gadepally V., “From words to watts: benchmarking the energy costs of large language model inference”, in 2023 IEEE High Performance Extreme Computing Conference (HPEC), 25 December 2023, Boston, MA, USA. https://doi.org/10.1109/HPEC58863.2023.10363447
Google Scholar
[70] Budiyani A. G., Prastyatama B., “Evaluation and experiment of interlocking brick module design to obtain varieties of ventilation opening area on wall”, Riset Arsitektur (RISA), vol. 4(03), (2020), 269-287. https://doi.org/10.26593/risa.v4i03.3932.269-287
Google Scholar
[71] Garriga S. M., Dabbagh M., Krarti M., “Evaluation of dynamic insulation systems for residential buildings in Barcelona, Spain”, ASME Journal of Engineering for Sustainable Buildings and Cities, vol. 1(1), (2020), 011002. https://doi.org/10.1115/1.4045144
Google Scholar
[72] Liu S., Du Y., Zhang R., He H., Pan A., Ho T. C., Zhu Y., Li Y., Yip H.-L., Jen A. K. Y., Tso C. Y., “Perovskite smart windows: the light manipulator in energy-efficient buildings”, Advanced Materials, vol. 36(17), (2023), 2306423. https://doi.org/10.1002/adma.202306423
Google Scholar
[73] Mosadeghrad A., Isfahani P., Eslambolchi L., Zahmatkesh M., Afshari M., “Strategies to strengthen a climate-resilient health system: a scoping review”, Globalization and Health, vol. 19, (2023), 62. https://doi.org/10.1186/s12992-023-00965-2
Google Scholar
[74] Li K., Zhang Y., Liu X., Gao J., Gao B., “An adaptive optimization control strategy for advanced engine thermal management systems”, in 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 2021, 1-5. https://doi.org/10.1109/CVCI54083.2021.9661207
Google Scholar
[75] Holsman K. K., Climate change 2022 – impacts, adaptation and vulnerability, Cambridge University Press, 2023. https://doi.org/10.1017/9781009325844
Google Scholar
[76] Setaki F., van Timmeren A., “Disruptive technologies for a circular building industry”, Building and Environment, vol. 223, (2022), 109394. https://doi.org/10.1016/j.buildenv.2022.109394
Google Scholar
Authors
Kongphat Phaiboonnukulkijkongphatphaiboonnukulkij@gmail.com
Chulalongkorn University' Thailand
https://orcid.org/0009-0009-9932-5940
Statistics
Abstract views: 40PDF downloads: 21
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.