The problem of GNSS positioning with measurements recorded using Android mobile devices
Article Sidebar
Open full text
Issue Vol. 18 No. 3 (2019)
-
The analysis of energy-saving technologies used in buildings with low energy consumption
Krzysztof Pawłowski005-016
-
Strengthening of the wooden structures
Szymon Ślósarz017-028
-
Use of aluminium and glass facades in urban architecture
Monika Górka029-040
-
Selection of floor heating by MCDA method
Jacek Karpiesiuk041-050
-
The problem of GNSS positioning with measurements recorded using Android mobile devices
Bogdan Skorupa051-062
-
Interpretation of CPT and SDMT tests for Lublin loess soils exemplified by Cyprysowa research site
Krzysztof Nepelski063-072
-
Property price dependence from noise level on example of local real estate market
Ewa Debinska, Joanna Pałubska073-082
-
New urban spaces - their heritage and creation
Dariusz Gawel083-092
Archives
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
-
Vol. 18 No. 4
2020-04-23 8
-
Vol. 18 No. 3
2020-01-24 8
-
Vol. 18 No. 2
2019-11-20 8
-
Vol. 18 No. 1
2019-09-30 8
-
Vol. 17 No. 4
2019-10-10 16
-
Vol. 17 No. 3
2019-10-10 15
-
Vol. 17 No. 2
2019-10-10 16
-
Vol. 17 No. 1
2019-10-10 21
-
Vol. 16 No. 4
2019-10-14 14
-
Vol. 16 No. 3
2019-10-14 15
-
Vol. 16 No. 2
2019-10-14 12
-
Vol. 16 No. 1
2019-10-15 20
Main Article Content
DOI
Authors
Abstract
The current work presents the issue of determining the position of the observer using measurements registered with GNSS (Global Navigation Satellite System) receivers that Android mobile devices are equipped with. The discussed questions concern using GNSS measurement data, which have been made available in the Android system since version 7.0. The present paper has the character of a review. It demonstrates how measurement data can be obtained via Application Programming Interface. Moreover, it discusses the available software that can be for registering measurements and their initial analysis. Subsequently, it reviews scientific works concerning the problem of positioning with the use of smartphones. Special emphasis was placed on tests consisting in an analysis of phase observations registered using dual-frequency receivers. The summary of the article presents the prospects for using mobile devices in precise point positioning. It also points out the limitations to achieving high accuracy and reliability of such measurements.
Keywords:
References
Realini E. et al., “Precise GNSS Positioning Using Smart Devices”, Sensors, vol. 17 (2017), . https://doi.org/10.3390/s17102434 DOI: https://doi.org/10.3390/s17102434
Lachapelle G. et al., “Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone”, Sensors, vol. 18 (2018). https://doi.org/10.3390/s18124185 DOI: https://doi.org/10.3390/s18124185
Hofmann-Wellenhof B. et al., GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo & more, Vienna: Springer-Verlag, 2008.
Maciuk K., “The application of GNSS system in logistics”, Budownictwo i Architektura, vol. 17 (2018), pp. 181-188. https://doi.org/10.24358/Bud-Arch_18_173_13 DOI: https://doi.org/10.24358/Bud-Arch_18_173_13
Robustelli U., Baiocchi V., Pugliano G., “Assessment of Dual Frequency GNSS Observations from a Xiaomi Mi 8 Android Smartphone and Positioning Performance Analysis”, Electronics, vol. 8 (2019). https://doi.org/10.3390/electronics8010091 DOI: https://doi.org/10.3390/electronics8010091
White Paper on using GNSS Raw Measurements on Android devices. Prague, Czech Republic: European GNSS Agency, 2017. https://doi.org/10.2878/449581
Wu Q. et al., “Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone”, Sensors, vol. 19 (2019). https://doi.org/10.3390/s19092189 DOI: https://doi.org/10.3390/s19092189
Seeber G. Satellite Geodesy. Berlin, New York: Walter De Gruyter, 2003. DOI: https://doi.org/10.1515/9783110200089
“GPS Measurement Tools”. Available: https://github.com/google/gps-measurement-tools [Accessed: 11 September 2019]
GNSS Analysis Tools Installation Instructions and User Manual v. 2.6.3.0, 18.09.2018. Available: https://github.com/google/gps-measurement-tools/releases/download/V2.6.3.0 [Accessed: 11 September 2019]
“The Receiver Independent Exchange Format”. Available: ftp://igs.org/pub/data/format/rinex303.pdf [Accessed: 11 September 2019]
“Rokubun”. Available: https://github.com/rokubun/android_rinex. [Accessed: 13 September 2019]
Wiśniewski B., Bruniecki K., Moszyński M., “Evaluation of RTKLIB’s Positioning Accuracy Using low-cost GNSS Receiver and ASG-EUPOS”, International Journal of Marine Navigation and Safety of Sea Transportation, vol. 7 (2013), pp. 79-85. http://dx.doi.org/10.12716/1001.07.01.10 DOI: https://doi.org/10.12716/1001.07.01.10
Hernandez-Pajeras M. et al., “The ESA/UPC GNSS-Lab Tool (gLAB): An advanced multipurpose package for GNSS data processing”, in 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Noordwijk 2010, 2010. http://doi.org/10.1109/NAVITEC.2010.5708032 DOI: https://doi.org/10.1109/NAVITEC.2010.5708032
Khaled M., Abdel M., “Comparison of GPS Commercial Software Packages to Processing Static Baseline up to 30 km”, ARPN Journal of Engineering and Applied Sciences, vol. 10 (2015), pp. 10640-10650.
“Geo++ RINEX Logger”. Available: http://www.geopp.de/logging-of-gnss-raw-data-on-android. [Accessed: 11 September 2019]
“Nottingham Scientific Limited”. Available: https://www.flamingognss.com/rinexon [Accessed: 17 September 2019]
“Galfins Team”. Available: https://gnss-compare.readthedocs.io/en/latest/team.html [Accessed: 17 September 2019]
“GoGPS Project”. Available: http://www.gogps-project.org [Accessed: 11 September 2019]
“Efficient Java Matrix Library”. Available: https://ejml.org [Accessed: 11 September 2019]
Wielgocka N., Hadaś T., „Czy to już możliwe?” Geodeta , vol. 4 (2019), pp. 8-12.
Li P., Zhang X., “Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning”, GPS Solution, vol. 18 (2014), pp. 461-471. https://doi.org/10.1007/s10291-013-0345-5 DOI: https://doi.org/10.1007/s10291-013-0345-5
Gogoi N. et al., “A Controlled-Environment Quality Assessment of Android GNSS Raw Measurements”, Electronics, vol. 8 (2019). https://doi.org/10.3390/electronics8010005 DOI: https://doi.org/10.3390/electronics8010005
Xu G., GPS Theory, Algorithms and Applications. Berlin Heidelberg New York: Springer, 2007.
Liu Z., “A new automated cycle slip detection and repair method for a single dual-frequency GPS
receiver”, Journal of Geodesy, vol. 85 (2011), pp. 171-183. https://doi.org/10.1007/s00190-010-0426-y DOI: https://doi.org/10.1007/s00190-010-0426-y
De Lacy M. C. et al., “The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem”, Journal of Geodesy vol. 82 (2008), pp. 527–542. https:// doi.org/10.1007/s00190-007-0203-8
Pankratius V. et al., “Mobile crowd sensing in space weather monitoring: the mahali project”, IEEE Communications Magazine, vol. 52 (2014), pp. 22-28. https://doi.org/10.1109/MCOM.2014.6871665 DOI: https://doi.org/10.1109/MCOM.2014.6871665
Wei E. et al., “VRS Virtual Observations Generation Algorithm”, Journal of Global Positioning System, vol. 5 (2006), pp. 76-81. https://doi.org/10.5081/jgps.5.1.76 DOI: https://doi.org/10.5081/jgps.5.1.76
Article Details
Abstract views: 624
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
