Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
The paper presents the results of updating of numerical models of the rectangular steel plate members in a plane state of stress, the updated parameter was a support length. Three different members loaded in a static or dynamic way were analyzed. The article shows examples of purely numeric updating. The data used to the update of numerical models was obtained from numerical simulations and it corresponds to the data, which can be measured by using the Digital Image Correlation (DIC) system. The main aim of the paper is to check the possibilities of the DIC system application in updating of numerical models.
Miller B., “Nieniszczące badania konstrukcji: dostrajanie modelu oraz identyfikacja obciążenia powodującego częściowe uplastycznienie”, Zeszyty Naukowe Politechniki Rzeszowskiej, Budownictwo i Inżynieria Środowiska, no. 243, 45 (2007), pp. 125-134.
Google Scholar
Wang Y. H. et al., “Whole field sheet-metal tensile test using digital image correlation”, Experimental Techniques, vol. 34, no. 2 (2010), pp. 54-59. https://doi.org/10.1111/j.1747-1567.2009.00483.x
DOI: https://doi.org/10.1111/j.1747-1567.2009.00483.x
Google Scholar
Digital Image Correlation (DIC). Available: http://www.dantecdynamics.com/digital-image-correlation [Accessed: 20 Dec 2019]
Google Scholar
Sutton M.A., Orteu J.J., Schreier H.W., Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: SPRINGER (2009), ISBN: 978-0-387-78746-6, e-ISBN: 978-0-387-78747-3. https://doi.org/10.1007/978-0-387-78747-3
DOI: https://doi.org/10.1007/978-0-387-78747-3
Google Scholar
Szymczak T., Kowalewski Z. L., Brodecki A., “Metoda cyfrowej korelacji obrazu w badaniach materiałów i elementów”, Dozór Techniczny, vol. 4 (2016), pp. 22-31.
Google Scholar
Q-450 SYSTEM Operation Manual, Dantec Dynamics (2013)
Google Scholar
Chu T. C., Ranson W. F., Sutton M. A., “Application of digital-image correlation techniques to experimental mechanics”, Experimental Mechanics, no. 25 (1985), pp. 232–244. https://doi.org/10.1007/BF02325092
DOI: https://doi.org/10.1007/BF02325092
Google Scholar
Peters W. H. et al., “Applications of digital image correlation methods to rigid body mechanics”, Optical Engineering, no. 22 (1983), pp. 738–742.
Google Scholar
Peters W. H., Ranson W. F., “Digital imaging technique in experimental stress analysis”, Optical Engineering, no. 21 (1982), pp. 427–431. https://doi.org/10.1117/12.7972925
DOI: https://doi.org/10.1117/12.7972925
Google Scholar
Guoqing Gu et al., “Non-uniform illumination correction based on the retinex theory in digital image correlation measurement method”, Optica Applicata, vol. XLVII, no. 2 (2017), pp. 199-208. https://doi.org/10.5277/oa170203
Google Scholar
Hack E., Lin X., Patterson E. A., Sebastian C. M., “A reference material for establishing uncertainties in full-field displacement measurements”. Measurement Science and Technology, vol. 26, no. 7 (2015). https://doi.org/10.1088/0957-0233/26/7/075004
DOI: https://doi.org/10.1088/0957-0233/26/7/075004
Google Scholar
Lutowski Z., Marciniak B., Marciniak T., Bujnowski S., “Precision of Sub-Pixel Image Displacement Measurements”. Journal of Machine Construction and Maintenance, vol. 4 (2017), pp. 21-26.
Google Scholar
Zappa E., Matinmanesh A., Mazzoleni P., “Evaluation and improvement of digital image correlation
Google Scholar
uncertainty in dynamic conditions”, Optics and Lasers in Engineering, vol. 59 (2014), pp. 82–92. https://doi.org/10.1016/j.optlaseng.2014.03.007
DOI: https://doi.org/10.1016/j.optlaseng.2014.03.007
Google Scholar
Krawczyk Ł., Gołdyn M., Urban T., “O niedokładnościach systemów cyfrowej korelacji obrazu”,
Google Scholar
Journal of Civil Engineering, Environment and Architecture, vol. XXXIV, no. 64 (2017), pp. 259-270. https://doi.org/10.7862/rb.2017.120
DOI: https://doi.org/10.7862/rb.2017.120
Google Scholar
Kamera szybka Phantom v341. Available: http://www.ects.pl/produkty/c84_kamery-szybkie/p264_kamera-szybka-phantom-v341 [Accessed: 20.12.2019]
Google Scholar
Lord J. D., Digital Image Correlation (DIC). Modern Stress and Strain Analysis. A state of the art guide to measurement techniques. BSSM Technical Editors: J. Eaton Evans, J. M. Dulieu-Barton, R. L. Burguete (2009), pp. 14-15.
Google Scholar
Turoń B., Ziaja D., Miller B., “Wykrywanie uszkodzeń węzłów ramy stalowej z wykorzystaniem metody cyfrowej korelacji obrazu”, Journal of Civil Engineering, Environment and Architecture, vol. XXXIV, no. 64 (2017), pp. 185-198. https://doi.org/10.7862/rb.2017.91
DOI: https://doi.org/10.7862/rb.2017.91
Google Scholar
Affine and Projective Transformations. Available: https://www.graphicsmill.com/docs/gm/affine-and-projective-transformations.htm [Accessed: 20.12.2019]
Google Scholar
Heckbert P. S. Fundamentals of Texture Mapping and Image Warping. Master’s thesis, University of California at Berkeley, Department of Electrical Engineering and Computer Science, Berkeley 1989.
Google Scholar
Wang Y. Video Processing & Communications. Two Dimensional Motion Estimation (Part I: Fundamentals & Basic Techniques. Available: http://eeweb.poly.edu/~yao/EL6123old/motion2d_part1_new.pdf [Accessed: 20 Dec 2019]
Google Scholar
Trebuňa F., Huňady R., Bobovský Z., Hagara M., “Results and Experiences from the Application of Digital Image Correlation in Operational Modal Analysis”, Acta Polytechnica Hungarica, vol. 10, no. 5 (2013), pp. 159-174.
Google Scholar
CALFEM. A finite element toolbox. Version 3.4 (2004), ISBN: 91-8855823-1
Google Scholar
Wydział Budownictwa, Inżynierii Środowiska i Architektury
Katedra Mechaniki Konstrukcji
Wydział Budownictwa, Inżynierii Środowiska i Architektury
Katedra Mechaniki Konstrukcji
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.