[1] Neville A.M. Właściwości Betonu. Polski Cement, 2000.
[2] Fic S.B., Vyrovoy V.N., Dorofeev V.S. Procesy samoorganizacji struktury kompozytowych materiałów budowlanych. Politechnika Lubelska, 2013.
[3] Naus D.J. The effect of elevated temperature on concrete materials and structures – a literature review (No. ORNL/TM-2005/553). Oak Ridge National Laboratory, 2006
[4] Schneider U. Concrete at high temperatures - a general review. Fire Safety Journal 13(1) (1988) 55-68.
[5] Harmathy T.Z. Thermal properties of concrete at elevated temperatures. Journal of Materials 5 (1970) 47-74.
[6] Handoo S.K., Agarwal S., Agarwal S.K. Physico – chemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement and Concrete Research 32 (2002) 1009-1018.
[7] Georgali B., Tsakiridis P.E. Microstructure of fire – damaged concrete, a case ctudy. Cement and Concrete Composites 27 (2005) 255-259.
[8] Peng G.F., Huang Z.S. Change in microstructure of hardened cement paste subjected to elevated temperatures. Construction and Building Materials 22 (2008) 593-599.
[9] Alonso C., Fernandez L. Dehydration and rehydration process of cement paste exposed to high temperature environments. Journal of Material Science 39 (2004) 3015-3024.
[10] Mendes A., Sanjayan J.G., Gates W.P., Collins F. The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cement and Concrete Composites 34 (2012) 1067-1074.
[11] Fu Y.F., Wong Y.L., Poon C.S., Tang C.A., Lin P. Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures. Cement and Concrete Research 34 (2004) 789-797.
[12] Fu Y.F., Wong Y.L., Poon C.S., Tang C.A. Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. Cement and Concrete Composites 29 (2007) 103-116.
[13] Kurdowski W. Chemia cementu i betonu. Wydawnictwo Polski Cement, Wydawnictwo Naukowe PWN, 2010
[14] Dias W.P.S, Khoury G.A., Sullivan P.J.E. Shrinkage of hardened cement paste at temperatures up to 670°C (1238°F). ACI Materials Journal 87 (1990) 204-209.
[15] Lim S., Mondal P. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials. Materials Characterization 92 (2014) 15-25.
[16] Ibrahim R.K., Hamid R., Taha M.R. Strength and microstructure of mortar containing nanosilica at high temperature. ACI Materials Journal 111 (2014) 163-170.
[17] Morsy M.S., Alsayed S.H., Aqel M. Effect of elevated temperature on mechanical properties and microstructure of silica flour concrete. International Journal of Civil & Environmental Engineering 10 (2010) 1-6.
[18] Szeląg M., Szewczak A. Zastosowanie stereologii w inżynierii materiałów budowlanych. Budownictwo i Architektura 14(1) (2015) 115-125.
[19] Konkol J., Kulpiński J., Prokopski G. Zastosowanie analizy obrazu do określania porowatości betonu na próbkach utwardzonych. Inżynieria Materiałowa 6 (2002) 737-742.
[20] Inyang H.I., Hourani M.S., Menezes G.B., Young D.T., Ogunro V.O., Bin S., Work D. Stereological analysis of aggregate distribution in contaminant barrier concrete. Soil & Sediment Contamination 17 (2008) 425-436.
[21] Sumanasooriya M.S., Neithalath N. Stereology- and morphology-based pore structure descriptors of enhanced porosity (pervious) concretes. ACI Materials Journal 106(5) (2009) 429-438.
[22] Nemati K.M., Monteiro P.J., Scrivener K.L. Analysis of compressive stress-induced cracks in concrete. ACI Materials Journal 95(5) (1998) 617-630.
[23] Ringot E., Bascoul A. About the analysis of microcracking in concrete. Cement and Concrete Composites 23(2-3) (2001) 261-266.
[24] Ringot E. Automatic quantification of microcracks network by stereological method of total projections in mortars and concretes. Cement and Concrete Research 18(1) (1988) 35-43.
[25] Sinha S.K., Fieguth P.W. Automated detection of cracks in buried concrete pipe images. Automation in Construction 15(1) (2006) 58-72.
[26] Sinha S.K., Fieguth P.W. Segmentation of buries concrete pipe images. Automation in Construction 15 (2005) 47-57.
[27] Fujita Y., Mitani Y., Hamamoto Y. A method for crack detection on a concrete structure. Pattern Recognition 3 (2006) 901-904.
[28] Fic S., Szeląg M. Analysis of the development of cluster cracks caused by elevated temperatures in cement paste. Construction and Building Materials 83 (2015) 223-229. doi:10.1016/j.conbuildmat.2015.03.044
[29] PN-EN 196-1:2006 Metody badania cementu – Część 1: Oznaczanie wytrzymałości.
[30] PN-EN 12390-3:2011 Badania betonu – Część 3: Wytrzymałość na ściskanie próbek do badań.
[31] PN-EN 12390-5:2011 Badania betonu – Część 5: Wytrzymałość na zginanie próbek do badań.