Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
W artykule przedstawiono sprawozdanie na temat podejścia do optymalizacji procesu selekcji składników do betonu wysokowartościowego (BWW) oraz zapraw. Pokazany jest wybrany przykład stosunku cementu, minerałów i chemicznych domieszki, jako najbardziej kosztownych i wpływowych na beton, od punktu maksymalnej aktywności, mierzonej przez wzrostem indeksów zdolności do płynięcia i do wytrzymałości na ściskanie. Metoda łączy w sobie modele do oznaczania aktywności indeksów z prostymi równaniami stochastycznymi uzyskanymi przy obliczeniu wyników eksperymentalnych.
EN 206-1:2000, Concrete - Part 1: Specification, performance, production and conformity.
Google Scholar
BS EN 934-2:2009+A1:2012, Admixtures for concrete, mortar and grout. Concrete admixtures. Definitions, requirements, conformity, marking and labeling.
Google Scholar
ASTM C 618, Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.
Google Scholar
Caldarone M.A. High-Strength Concrete: A Practical Guide. CRC Press, 2008, 272p.
Google Scholar
Fic S., Góra J., Piasta W. The influence of coarse carbonate aggregate on elastic deformation (EC) and strength of HPC. Вісник Одеської державної академії будівництва та архітектури, Одеса 27 (2007) 318–322.
Google Scholar
Nawy E.G. Fundamentals of High Strength High Performance Concrete. Longman Group Limited, Harlow, Longman Pub Group, 1996, 360p.
Google Scholar
Bharatkumar B.H., Narayanan R., Raghuprasad B.K., Ramachandramurthy D.S. Mix proportioning of high performance concrete. Cement and Concrete Composites 23(1) (2001)71–80.
DOI: https://doi.org/10.1016/S0958-9465(00)00071-8
Google Scholar
Usherov-Marshak A.V., Zlatkovskii O.A., Ciak M. Assessing the efficiency of chemical and mineral admixtures in early cement hydration. Inorganic Materials 40(8) (2004) 886-890. Translated from Neorganicheskie Materialy 40(8) (2004) 1014–1019.
Google Scholar
Ciak M.J. Metoda oceny efektywności domieszek i kompatybilności systemu cement – domieszka. Badania Naukowe, Olsztyn: UWM 2 (2005) 122–123.
Google Scholar
Батраков В.Г., Каприелов С.С., Иванов Ф.М., Шейнфельд А.В. Оценка ультрадисперсных отходов металлургических производств как добавок в бетон. Бетон и железобетон. 12 (1990) 15–17.
Google Scholar
Shvarzman A., Kovler K., Shamban I., Grader G.S., Shter G.E. Influence of chemical and phase composition of mineral admixtures on their pozzolanic activity. Advances in Cement Research 14(1) (2002) 35–41.
DOI: https://doi.org/10.1680/adcr.2002.14.1.35
Google Scholar
Badogiannis E., Papadakis V.G., Chaniotakis E., Tsivilis S. Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value. Cement and Concrete Research 34(6) (2004) 1035–1041.
Google Scholar
Dvorkin L., Dvorkin O. and Ribakov Y. Multi-Parametric Concrete Compositions Design. Nova Science Pub Inc., 2013, 223p.
Google Scholar
Cyr M., Lawrence P., Ringot E. Efficiency of Mineral Admixtures in Mortars: Quantification of the Physical and Chemical Effects of Fine Admixtures in Relation with Compressive Strength. Cement and Concrete Research, 36(2) (2006) 264–277.
Google Scholar
Dvorkin L., Bezusyak A., Lushnikova N., Ribakov Y. Using mathematical modeling for design of self-compacting high strength concrete with metakaolin admixture. Construction and Building Materials 37 (2012) 851–864.
Google Scholar
Каолины Украины. Справочник. ред. Ф.В. Овчаренко, Киев, Наук. думка, 1982, 368 с.
Google Scholar
Дворкін Л.Й., Лушнікова Н.В, Рунова Р.Ф., Троян В.В. Метакаолін в будівельних розчинах i бетонах. К.: Вид. КНУБiА, 2007, 216p.
Google Scholar
Wala D., Rosiek G. Minerały ilaste jako dodatek pucolanowy do cementów hydraulicznych. CWB 1 (2003) 27–33.
Google Scholar
Малолепши Я., Питель З. Влияние метакаолина на свойства цементных растворов. Минеральные и химические добавки в бетон, под ред. А.В. Ушерова-Маршака, Харьков, Колорит, 2005, 61–77.
Google Scholar
ТУ 5743-083-46854090-98, Модификатор бетона МБ-С. Технические условия. Москва, 1998.
Google Scholar
Батраков В.Г. Модифицированные бетоны. Теория и практика. Москва, Технопроект, 1998, 768p.
Google Scholar
Collepardi M. Il nuovo calcestruzzo, Tintoretto, 2003, 391 p.
Google Scholar
Vizcayno C., Gutiérrez R.M., Castello R., Rodriguez E., Guerrero C.E. Pozzolan Obtained by Mechanochemical and Thermal Treatments of Kaolin. Applied Clay Science. 49 (2010) 405–413.
Google Scholar
ASTM C230, Flow Table for Use in Tests of Hydraulic Cement.
Google Scholar
ASTM C109 / C109M – 13, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens).
Google Scholar
Davison J.J. Effect of air-content on durability of cement-lime mortars. Durability of Building Materials 1 (1982) 23–34.
Google Scholar
Dilsa J., Boelb V., De Schuttera G. Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC. Construction and Building Materials 41 (2013) 455–463.
DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.050
Google Scholar
Kerkhoff B., Benefits of Air Entrainment in HPC, HPC Bridge Views 23 (2002) 3.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.