Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Artykuł przedstawia dane literaturowe dotyczące zastosowania stereologii oraz analizy obrazu do ilościowej oceny struktury materiałów budowlanych. Na wstępie opisano rozwój metod stereologicznych i technik komputerowej analizy obrazu w badaniach materiałów budowlanych. Następnie zdefiniowano ilościowe parametry struktury oraz przedstawiono sposób ich określania. W artykule zrelacjonowano dotychczasowe zastosowanie analizy obrazu do określania właściwości kompozytów cementowych, w tym: ocena porowatości stwardniałego betonu, określenie rozkładu kruszywa w matrycy cementowej, analiza spękań. Stwierdzono, że wiodącym problemem analizy obrazu jest proces przygotowania próbki w celu prawidłowej ekstrakcji badanej fazy oraz metodologia automatyzacji pomiarów.
Ryś J. Stereologia materiałów. Fotobit Design, Kraków, 1995.
Google Scholar
Howe K., Eisenhart M. Standards for qualitative (and quantitative) research: A prolegomenon. Educational Researcher 19(4) (1990) 2-9.
Google Scholar
Newman I. Qualitative-quantitative research methodology: Exploring the interactive continuum. SIU Press, Carbondale, 1988.
Google Scholar
Prokopski G., Mechanika pękania betonów cementowych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2007.
Google Scholar
Chernyavskii K.S. Stereology in metal science. Metallurgiya, Moscow, 1977.
Google Scholar
Underwood E.E., Starke Jr E.A. Quantitative stereological methods for analyzing important microstructural features in fatigue of metals and alloys. Georgia Inst of Tech Atlanta School of Chemical Engineering and Metallurgy, Atlanta, 1978.
Google Scholar
Carpenter A.M. Stereology. Definition and historic background. Journal of Histochemistry & Cytochemistry 27(11) (1979) 1535–1535.
DOI: https://doi.org/10.1177/27.11.512342
Google Scholar
Russ J.C. Practical stereology. Springer, 1986.
DOI: https://doi.org/10.1007/978-1-4899-3533-5
Google Scholar
Fic S., Barnat-Hunek D. The effectiveness of hydrophobisation of porous building materials by using the polymers and nanopolymers solutions. International Journal of Materials Science and Engineering 2(2) (2014) 93–98.
DOI: https://doi.org/10.12720/ijmse.2.2.93-98
Google Scholar
Fic S., Brzyski P., Szeląg M. Composite based on foam lime mortar with flax fibers for use in the building industry. Ecological Chemistry and Engineering A 20(7–8) (2013) 899–907.
Google Scholar
Underwood E.E. Practical solutions to stereological problems. Practical Applications of Quantitative Metallography (1984) 160–179.
DOI: https://doi.org/10.1520/STP30219S
Google Scholar
Weibel E.R., Weibel E.R. Estimation of basic stereological parameters. Stereological methods 2 (1980) 55–139.
Google Scholar
PN-EN 480-11: Domieszki do betonu, zapraw i zaczynu. Metody badań. Oznaczenie charakterystyki porów powietrznych w stwardniałym betonie.
Google Scholar
PN-88/B-06250: Beton zwykły.
Google Scholar
Konkol J. Kulpiński J. Prokopski G. Zastosowanie analizy obrazu do określania porowatości betonu na próbkach utwardzonych. Inżynieria Materiałowa 23 (2002) 737–742.
Google Scholar
Konkol J., Prokopski G. Zastosowanie metody analizy obrazu do oceny struktury porów w materiałach budowlanych. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, Politechnika Rzeszowska, Rzeszów 2006, s. 271–276.
Google Scholar
Konkol J., Prokopski G. Zastosowanie stereologii do oceny porowatości betonu. Fizyka Budowli w Teorii i Praktyce 2 (2007) 137–140.
Google Scholar
Konkol J., Białek J. Zastosowanie metod stereologicznych do oceny mrozoodporności betonów napowietrzanych. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska 57(4) (2010) 285–292.
Google Scholar
Sumanasooriya M.S., Neithalath N. Stereology-and morphology-based pore structure descriptors of enhanced porosity (pervious) concretes. ACI Materials Journal 106(5) (2009) 429–438.
DOI: https://doi.org/10.14359/51663143
Google Scholar
Neithalath N., Sumanasooriya M.S., Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials characterization 61(8) (2010) 802–813.
DOI: https://doi.org/10.1016/j.matchar.2010.05.004
Google Scholar
Sumanasooriya M.S, Neithalath N. Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement and Concrete Composites 33(8) (2011) 778–787.
DOI: https://doi.org/10.1016/j.cemconcomp.2011.06.002
Google Scholar
Hu J., Stroeven P. Local porosity analysis of pore structure in cement paste. Cement and Concrete Research 35(2) (2005) 233–242.
DOI: https://doi.org/10.1016/j.cemconres.2004.06.018
Google Scholar
Hu J., Stroeven P. Depercolation threshold of porosity in model cement: approach by morphological evolution during hydration. Cement and Concrete Composites 27(1) (2005) 19–25.
Google Scholar
Hu J., Stroeven P. Application of image analysis to assessing critical pore size for permeability prediction on cement paste. Image Analysis & Stereology 22(2) (2003) 97–103.
DOI: https://doi.org/10.5566/ias.v22.p97-103
Google Scholar
Hu J., Stroeven P. Size effect in structural analysis of cementitious materials. Proceedings of 9th European Congress on Stereology and Image Analysis, Polish Society for Stereology, Kraków 2005, s. 23–30.
Google Scholar
Hilfer R. Geometric and dielectric characterization of porous media. Physical Review B 44(1) (1991) 60–75.
DOI: https://doi.org/10.1103/PhysRevB.44.60
Google Scholar
Igarashi S., Watanabe A., Kawamura M. Evaluation of capillary pore size characteristics in high-strength concrete at early ages. Cement and Concrete Research 35(3) (2005) 513–519.
DOI: https://doi.org/10.1016/j.cemconres.2004.06.036
Google Scholar
Igarashi S., Kawamura M., Watanabe A. Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model. Cement and Concrete Composites 26(8) (2004) 977–985.
DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.031
Google Scholar
Powers T.C. Physical properties of cement paste Proceedings of the 4th International Symposium on the Chemistry of Cement, Washington 1960, s. 577-613.
Google Scholar
PN-EN 933-1:2000 Badania geomterycznych właściwości kruszyw. Oznaczanie składu ziarnowego. Metoda przesiewu.
Google Scholar
PN-EN 933-2:1999 Badania geometrycznych właściwości kruszyw. Oznaczenie składu ziarnowego. Nominalne wymiary otworów sit badawczych.
Google Scholar
Konkol J. Analiza stereologiczna kruszywa w betonie - sposób uzyskania krzywej uziarnienia. Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska 47 (2008) 185–192.
Google Scholar
Konkol J. Oznaczenie składu ziarnowego kruszywa w betonie metodami analizy obrazu. Inżynieria Materiałowa 31(6) (2010) 1409–1414.
Google Scholar
Hu J., Stroeven P. Shape characterization of concrete aggregate. Image Analysis & Stereology 25 (2006) 43–53.
Google Scholar
Mora C.F., Kwan A.K.H. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement and Concrete Research 30(3) (2000) 351–358.
DOI: https://doi.org/10.1016/S0008-8846(99)00259-8
Google Scholar
Kwan A.K.H., Mora C.F., Chan H.C. Particle shape analysis of coarse aggregate using digital image processing. Cement and Concrete Research 29(9) (1999) 1403–1410.
DOI: https://doi.org/10.1016/S0008-8846(99)00105-2
Google Scholar
Mora C.F., Kwan A.K.H., Chan H.C. Particle size distribution analysis of coarse aggregate using digital image processing. Cement and Concrete Research 28(6) (1998) 921–932.
DOI: https://doi.org/10.1016/S0008-8846(98)00043-X
Google Scholar
Lee J.R.J., Smith M.L., Smith L.N. A new approach to the three-dimensional quantification of angularity using image analysis of the size and form of coarse aggregates. Engineering Geology 91(2–4) (2007) 254–264.
DOI: https://doi.org/10.1016/j.enggeo.2007.02.003
Google Scholar
Nemati K.M., Monteiro P.J., Scrivener K.L. Analysis of compressive stress-induced cracks in concrete. ACI Materials Journal 95(5) (1998) 617–630.
DOI: https://doi.org/10.14359/404
Google Scholar
Ringot E., Bascoul A. About the analysis of microcracking in concrete. Cement and Concrete Composites 23(2–3) (2001) 261–266.
DOI: https://doi.org/10.1016/S0958-9465(00)00056-1
Google Scholar
Ringot E. Automatic quantification of microcracks network by stereological method of total projections in mortars and concretes. Cement and Concrete Research 18(1) (1988) 35–43.
DOI: https://doi.org/10.1016/0008-8846(88)90119-6
Google Scholar
Sinha S.K., Fieguth P.W. Automated detection of cracks in buried concrete pipe images. Automation in Construction 15(1) (2006) 58–72.
DOI: https://doi.org/10.1016/j.autcon.2005.02.006
Google Scholar
Sinha S.K., Fieguth P.W. Segmentation of buries concrete pipe images. Automation in Construction 15 (2005) 47–57.
Google Scholar
Fujita Y., Mitani Y., Hamamoto Y. A method for crack detection on a concrete structure. Pattern Recognition 3 (2006) 901–904.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.