Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
The paper presents the implementation of the modified strains development model (MSDM) for the two-way restrained self-stressed members such as expansive concrete-filled steel tubes and expansive concrete plane elements with arbitrary orthogonal reinforcement. The analytical approach allows defining the restrained strains and stresses in any 2D restraint conditions by following the iterative procedures and accounting for the elastic-plastic behaviour of expansive concrete at an early age. The consistency of the proposed method was confirmed by assessing the experimental results of the two series of the expansive concrete-filled steel tubes and three series of the expansive concrete plane members with mesh reinforcement in the centre of gravity.
Mikhailov V. and Litver S., Expansive and self-stressing cements and self-stressed reinforced structures. Stroyizdat, Moscow, 1974, p. 312 (in Russian).
Google Scholar
Mikhailov V. and Gershvald V., “Plane self-stressed structures”, in Researches and usage of self-stressing concrete and self-stressed structures: NIIZHB, 1984, pp. 62-67 (in Russian).
Google Scholar
TCP 45-5.03-158-2009, concrete and reinforced concrete structures from self-stressing concrete: design rules, Minsk, 2010 (in Russian).
Google Scholar
Ishikava Y., Shibata K. and Tanabe T., “Initial stress analysis of expansive material under restrictions based on chemical conservation law”, in Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures, 2009, pp. 437-443.
DOI: https://doi.org/10.1201/9780203882955.ch57
Google Scholar
Marchuk V., Strains and stresses of plane self-stressing concrete elements under nonsymmetrical biaxial restraint at the expansion stage, (PhD thesis), BSTU, Brest, Belarus, 2002 (in Russian).
Google Scholar
Litver S. and Petukhov A., “Stresses under bi-axial restraint conditions”, in Researches and usage of self-stressing concrete and self-stressed structures: NIIZHB, 1984, pp. 67-78 (in Russian).
Google Scholar
Man T., Wang B., Jin H. and Zhang X., “Expansion behavior of self-stressing concrete confined by glass-fiber composite meshes”, in Construction and Building Materials, no. 128, 2016, pp. 38-46. https://doi.org/10.1016/j.conbuildmat.2016.10.022
DOI: https://doi.org/10.1016/j.conbuildmat.2016.10.022
Google Scholar
Okada K., M. Ohta M., Nagafuchi T., Yata A. and Tamai S., “Characteristics of expansive concrete under bi-axial restraint”, Journal of the Society of Material Science, no. 32, 1983, pp. 182-187.
DOI: https://doi.org/10.2472/jsms.32.182
Google Scholar
Wang V., Han T. and Jin H., “Prediction of expansion behaviour of self-stressing concrete by artificial neural networks and fuzzy inference system”, Construction and Building Materials, no. 84, 2015, pp. 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059
DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.059
Google Scholar
Ito H., Maruyama I., Tanimura M. and Sato R., “Early age deformation and resultant induced stress in expansive high strength concrete”, Journal of Advanced Concrete Technology, 2004, vol. 2, no. 2, pp. 155-174.
DOI: https://doi.org/10.3151/jact.2.155
Google Scholar
Semianiuk V., Tur V., Herrador M. F. and Paredes G. M., “Early age strain and self-stresses of expansive concrete members under uniaxial restraint conditions”, Construction and Building Materials, 2017, no. 131, pp. 39-49.
DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.008
Google Scholar
Lei H., Chengkui H. and Yi L., “Expansive performance of self-stressing and self-compacting concrete confined with steel tube”, Journal of Wuhan University of Technology-Mater. Sci. Ed., 2007, pp. 341-345. https://doi.org/10.1007/s11595-005-2341-2
DOI: https://doi.org/10.1007/s11595-005-2341-2
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.