Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
W pracy zaprezentowany został model rysy fikcyjnej zaproponowany przez Hillerborga do opisu betonu rozciąganego. Model ten stanowi podstawę do opisu powstawanie i propagacji rysy w betonie na poziomie meso. Jest on przydanym narzędziem w zastosowaniach praktycznych, zarówno do analiz numerycznych jak i w badaniach eksperymentalnych. Model został wyprowadzony na podstawie obserwacji mechanizmów zarysowania w skali mikro i makro. Mechanizmy te zostały opisane w pracy. Na szczególną uwagę zasługuje fakt wpływu wymiaru kruszywa na parametry wytrzymałościowe i parametry pękania betonu, a w dalszej konsekwencji na powstawanie mikrorys i tworzenie rysy właściwej. Mimo osiągnięcia znaczącego postępu w badaniach nad mechanizmami pękania w betonie, nadal istnieje wiele aspektów wymagających dalszych analiz. Należy do nich analiza wpływu uziarnienia kruszywa na rozwój zarysowania. Zagadnienie to jest również przedmiotem rozważań przedstawionych w pracy.
Perlman A. B. and Sih G. C., “Elastostatic problems of curvilinear cracks in bonded dissimilar materials”, International Journal of Engineering Science, no. 5 (II), 1967, pp. 845-867.
DOI: https://doi.org/10.1016/0020-7225(67)90009-2
Google Scholar
Willis J. R., “Fracture mechanics of internal cracks”, Journ. Mech. Phys. Solids, no. 19(6), 1971, pp. 353-368.
DOI: https://doi.org/10.1016/0022-5096(71)90004-4
Google Scholar
Vile G. W. D., “The strength of concrete under short-term static biaxial stress”, Proc. Int. Conf. Structure of Concrete. (Eds. A.E. Brooks, K. Newman). Cem. Concr. Assoc., 1968, pp. 275-288.
Google Scholar
Shah S. P. and Winter G., “Inelastic behaviour and fracture of concrete”, Journ. Am. Concr. Inst., no. 63(9), 1966, pp. 925-930.
DOI: https://doi.org/10.14359/7659
Google Scholar
Stroeven P., “Some aspects of the micromechanics of concrete”, PhD Thesis, Delft University of Technology, Delft Univ. Press, 1973.
Google Scholar
Stroeven P., “Geometric probability approach to the examination of micro-cracking in plain concrete”, Journal of Materials Science 14, 1979, pp. 1141-1151.
DOI: https://doi.org/10.1007/BF00561298
Google Scholar
Stroeven P., “Some observations on micro-cracking in concrete subjected to various loading regimes”, Engineering Fracture Mechanics, vol. 35(4/5), 1990, pp. 775-782.
DOI: https://doi.org/10.1016/0013-7944(90)90161-9
Google Scholar
Stroeven P., “Damage mechanisms in fiber reinforced concrete composites“, in Comptes rendus des neuvième journées nationales sur les composites (Eds. J.-P. Favre, A. Vautrin), AMAC, JNC 9 (in French), 1994, pp. 925-938.
Google Scholar
Stroeven P. “Damage evolution in compressed concrete”, in: Proceedings of the International Conference on Fracture (Ed. A. Carpinteri), University of Turin, Italy (on CD), 2005.
Google Scholar
Stroeven P., 50 years’ focus on concrete – from meter- to nano-scale, Media Center Rotterdam, 2015.
Google Scholar
Perry C. and Gillott J. E., “The influence of mortar aggregate bond strength on the behaviour of concrete in compression”, Cement and Concrete Research, vol. 7(5), 1977, pp. 553-564.
DOI: https://doi.org/10.1016/0008-8846(77)90117-X
Google Scholar
Benkemoun N., Khazraji H. A., Poullain P., Choinska M. and Khelidj A., “3-D mesoscale simulation of crack-permeability coupling in the Brazilian splitting test”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 42(1), 2017, pp. 1-20.
DOI: https://doi.org/10.1002/nag.2749
Google Scholar
Hillerborg A., Modeer M. and Petersson P. E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements”, Cement and Concrete Research, vol. 6, 1976, 773-782.
DOI: https://doi.org/10.1016/0008-8846(76)90007-7
Google Scholar
RILEM Draft Recommendation, Determination of the fracture energy of mortar and concrete by means of three-point bent tests on notched beams, Matériaux et Constructions, vol. 18(106), 1985, pp. 258-290.
DOI: https://doi.org/10.1007/BF02472918
Google Scholar
Bažant Z. P. and Oh B. H., “Crack Band Theory for Fracture of Concrete”, Matériaux et Constructions, vol. 16(193), 1983, pp. 155-177.
DOI: https://doi.org/10.1007/BF02486267
Google Scholar
Cedolin L., Poli S. D. and Iori I., “Experimental Determination of the Fracture Process Zone in Concrete”, Cement and Concrete Research, vol. 13, 1983, pp. 557-567.
DOI: https://doi.org/10.1016/0008-8846(83)90015-7
Google Scholar
CEB-FIP Model Code 1990, Bulletins d’information, no. 196.
Google Scholar
Kleinschrodt H. D. and Winkler H., “The Influence of the Maximum Aggregate Size and the Size of Specimen on Fracture Mechanics Parameters”, Fracture Toughness and Fracture Energy of Concrete. Ed. by F. H. Wittmann, Elsevier Science Publishers B. V., Amsterdam, 1986, pp. 391-402.
Google Scholar
Słowik M., “The analysis of failure in concrete and reinforced concrete beams with different reinforcement ratio”, Archive of Applied Mechanics, vol. 89, 2019, pp. 885-895.
DOI: https://doi.org/10.1007/s00419-018-1476-5
Google Scholar
Kwon H., Zhao Z. and Shah S. P., “Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve”, Cement and Concrete Research, vol. 38 (8-9), 2008, pp. 1061-1069.
DOI: https://doi.org/10.1016/j.cemconres.2008.03.014
Google Scholar
Kumar S. and Bara V. S., “Size-effect of fracture parameters for crack propagation in concrete: a comparative study”, Computers and Concrete, vol. 9(1), 2012, pp. 1-19.
DOI: https://doi.org/10.12989/cac.2012.9.1.001
Google Scholar
Hoover C. G. and Bažant Z. P., “Cohesive Crack, Size Effect, Crack Band and Work-of-Fracture Models Compared to Comprehensive Concrete Fracture Tests”, International Journal of Fracture, vol. 187(1), 2014, pp. 133-143.
DOI: https://doi.org/10.1007/s10704-013-9926-0
Google Scholar
Słowik M., “The analysis of Crack Formation in Concrete and Slightly Reinforced Concrete Member in Bending”, in Brittle Matrix Composites 8. Edited by A.M. Brandt, V. C. Li, I. H. Marshall, Woodhead Publishing Limited, Cambridge and Zturek Research-Scientific Institute, Warsaw, 2006, pp. 351-360.
DOI: https://doi.org/10.1533/9780857093080.351
Google Scholar
Słowik M. and Błazik-Borowa E., “The Influence of Aggregate Size on the Width of Fracture Process Zone in Concrete Members”, in Brittle Matrix Composites 9, Woodhead Publishing Limited, Cambridge and IFTR, Warsaw, 2009, pp. 429-438.
DOI: https://doi.org/10.1533/9781845697754.429
Google Scholar
Słowik M., “Numerical analysis of the width of fracture process zone in concrete beams”, Computational Materials Science, vol. 50, 2011, pp. 1347-1352.
DOI: https://doi.org/10.1016/j.commatsci.2010.05.013
Google Scholar
Hu X. Z. and Wittmann F. H., “Fracture energy and fracture process zone”, Materials and Structures, vol. 25, 1992, pp. 319-326.
DOI: https://doi.org/10.1007/BF02472590
Google Scholar
Bažant Z. P. and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials. London: CRC Press, 1998.
Google Scholar
Rossello C., Elices M. and Guinea G. V., “Fracture of model concrete: 2. Fracture energy and characteristic length”, Cement and Concrete Research, vol. 36(7), 2006, pp. 1345-1353.
DOI: https://doi.org/10.1016/j.cemconres.2005.04.016
Google Scholar
Mechanical Behavior of Concrete, Edited by Torrenti J. M., Pijaudier-Cabot G. and Reynouard J. M., John Wiley & Sons, Inc., 2013, pp. 63-120.
Google Scholar
Carloni C., “Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures”, Advanced Composites in Bridge Construction and Repair, vol. 3, 2014, pp. 61-93.
DOI: https://doi.org/10.1533/9780857097019.1.61
Google Scholar
Zhong H., Li H., Ooi E. T. and Song C., “Hydraulic fracture at the dam-foundation interface using the scaled boundary finite element method coupled with the cohesive crack model”, Engineering Analysis with Boundary Elements, vol. 88, 2018, pp. 41-53. https://doi.org/10.1016/j.enganabound.2017.11.009
DOI: https://doi.org/10.1016/j.enganabound.2017.11.009
Google Scholar
Carloni C., Cusatis G., Salviato M., Le J.-L., Hoover C.G. and Bažant Z. P., “Critical comparison of the boundary effect model with cohesive crack model and size effect law”, Engineering Fracture Mechanics, vol. 215, 2019, pp. 193-210. https://doi.org/10.1016/j.engfracmech.2019.04.036
DOI: https://doi.org/10.1016/j.engfracmech.2019.04.036
Google Scholar
Cornetti P., Muñoz-Reja M., Sapora A. and Carpinteri A., “Finite fracture mechanics and cohesive crack model: Weight functions vs. cohesive laws”, International Journal of Solids and Structures, vol. 156-157, 2019, pp. 126-136. https://doi.org/10.3390/met9050602
DOI: https://doi.org/10.3390/met9050602
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.