Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Artykuł jest częścią pierwszą cyklu „Prognozowanie produkcji budowlano montażowej w województwie dolnośląskim”. Założono, że wynagrodzenie pracowników będzie jedną ze zmiennych niezależnych do wyznaczenia wielkości produkcji. Prognozowano wynagrodzenia pracowników w sektorze budowlanym metodami regresji wielorakiej i metodą autoregresji średniej ruchomej SARIMA. Przeprowadzono analizę wyników obliczając błędy ME, MAE, MPE, MAPE oraz współczynniki Theila I, I2, I12, I22, I32. Sformułowano wnioski z obliczeń. Wyznaczono równanie regresji wielorakiej z 12 predyktorami wytypowanymi spośród 53 zmiennych niezależnych. Uzyskano dane prognozowane do predykcji produkcji budowlano montażowej.
Box, G.E.P., Pierce, D.A., Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American Statistical Association 65 (1970) 1509-26.
DOI: https://doi.org/10.1080/01621459.1970.10481180
Google Scholar
Christodoulos Ch., Michalakelis Ch., Varoutas D., Forecasting with limited data: Combining ARIMA and diffusion models, Technological Forecasting and Social Change 77 (2010) 558-565.
DOI: https://doi.org/10.1016/j.techfore.2010.01.009
Google Scholar
Cieślak M., Prognozowanie gospodarcze : metody i zastosowanie, Wydaw. Naukowe PWN, Warszawa 2001.
Google Scholar
Dickey D.A., Fuller W.A., Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica 49(4) (1981) 1957-72.
DOI: https://doi.org/10.2307/1912517
Google Scholar
Ediger V.E., Akar S., ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy 35(3) (2007) 1701-1708.
DOI: https://doi.org/10.1016/j.enpol.2006.05.009
Google Scholar
Faruk D.O., A hybrid neural network and ARIMA model for water quality time series prediction, Engineering Applications of Artificial Intelligence 23(4) (2010) 586-594.
DOI: https://doi.org/10.1016/j.engappai.2009.09.015
Google Scholar
Gilbert K.C., Chatpattananan V., An ARIMA supply chain model with a generalized ordering policy, Journal of Modelling in Management 1(1) (2006).
DOI: https://doi.org/10.1108/17465660610667793
Google Scholar
Gilbert K.C., An ARIMA supply chain model, Management Science 51(2) (2005) 305-10.
DOI: https://doi.org/10.1287/mnsc.1040.0308
Google Scholar
Kot S., Jakubowski J., Sokołowski A., Statystyka, Difin, Warszawa 2007.
Google Scholar
Stanisz A., Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny,T 1. StatSoft Polska Sp. z o.o., Kraków 2006.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.