Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
W pracy przedstawiono wpływ sposobu zdefiniowania energii kinetycznej turbulencji k oraz dyssypacji energii kinetycznej turbulencji ε na rozkład współczynnika ciśnienia wiatru na powierzchni modelu o przekroju poprzecznym w kształcie prostokąta. Symulacje komputerowe przeprowadzono dla czterech wariantów definicji k i ε, najczęściej spotykanych w literaturze. Uwzględniono przypadki, w których część danych na temat struktury wiatru wykorzystanych w analizach pochodziła z badań doświadczalnych w tunelu aerodynamicznym. Wyniki, przedstawione w postaci współczynnika ciśnienia, zostały poddane analizie ze względu na ich adekwatności do użycia w inżynierii wiatrowej. Wszystkie obliczenia wykonano w programie ANSYS FLUENT przy użyciu modelu turbulencji przepływu k-ε. Obliczenia zostały wykonane dla modelu prostopadłościanu 3D.
Błazik-Borowa E., Problemy związane ze stosowaniem modelu turbulencji k-? wyznaczania parametrów opływu budynków, Wydawnictwo Politechniki Lubelskiej, 2008.
Google Scholar
Easeom G., Improved Turbulence Models for computational Wind Engineering, PhD Thesis, Nottingham, 2000.
Google Scholar
Launder B.E., Spalding D.B., Lectures in Mathematical Models of Turbulence, Academic Press, Londyn 1972.
Google Scholar
Richards P.J., Hoxey R.P., Appropriate boundary conditions for computational wind engineering model using the k-? turbulence model, Journal of Wind Engineering and Industrial Aerodynamics 46&47 (1993) 145-153.
DOI: https://doi.org/10.1016/0167-6105(93)90124-7
Google Scholar
Blocken B., Stathopoulos T., Carmeliet J., CFD simulation of the atmospheric boundary layer: wall function problems, Atmospheric Environment 41 (2007) 238-252.
DOI: https://doi.org/10.1016/j.atmosenv.2006.08.019
Google Scholar
Franke, J., Hellsten, A., Schlünzen, H. and Carissimo, B. (Eds.) Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment, COST Office, Brussels 2007.
Google Scholar
Norris S.E., Richards P.J., Appropriate boundary conditions for computational wind engineering models revisited, The fifth International Symposium on Computational Wind Engineering, 2010.
DOI: https://doi.org/10.1016/j.jweia.2010.12.008
Google Scholar
Tominaga Y., Mochida A., Yoshie R., Kataoka H., Nozu T., Yoshikawa M., Shirasawa T., AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1749-1761.
DOI: https://doi.org/10.1016/j.jweia.2008.02.058
Google Scholar
Zhang J., Yang Q., Li Q.S., Application of nonlinear eddy viscosity model in simulations of flows over bluff body, BBAA7 2012.
Google Scholar
Bęc J., Lipecki T., Błazik-Borowa E., Szulej J., Badania struktury przepływu w tunelu aerodynamicznym Laboratorium Inżynierii Wiatrowej Politechniki Krakowskiej, Materiały XIII Konferencji Fizyki Budowli w Teorii i Praktyce, Łódź 2011.
Google Scholar
Blocken B., Carmeliet J., Stathopoulos T., CFD evaluation of wind speed conditions in passages between parallel buildings – effect of wall-function roughness modifications for the atmospheric boundary layer flow, Journal of Wind Engineering and Industrial Aerodynamics 95, 2007.
DOI: https://doi.org/10.1016/j.susc.2007.01.031
Google Scholar
Yoshie R., Mochida A., Tominaga Y., Kataoka H., Harimoto K., Nozu T., Shirasawa T., Cooperative Project for CFD prediction of pedestrian wind environment In the Architectural Institute of Japan, Journal of Wind Engineering and Industrial Aerodynamics 95, 2007.
DOI: https://doi.org/10.1016/j.jweia.2007.02.023
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.