Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
This paper presents an analysis of the fire resistance of a steel joint subject-ed to tension. The authors of this article used prescriptive rules and simple calculation models to present an impact of the value of the load on the fire resistance of the connection. Designers often evaluate the critical temperature and fire resistance time of steel elements. However, they neglect the evaluation of the above-mentioned values for steel connections. In this article a simple engineering method was used to calculate the fire resistance of the joint.
Franssen J.M., Real P.V. Fire design of steel structures. Eurocode 1: Actions on structures, Part 1-2: Actions on structures exposed to fire, Eurocode 3: Design of steel structures, Part 1- 2: Structural fire design. ECCS, 2010.
Google Scholar
European Committee for Standardization. EN 1993-1-2 Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. Brussels, 2005.
Google Scholar
Maślak M. Trwałość pożarowa stalowych konstrukcji prętowych. Wydawnictwo Politechniki Krakowskiej, 2009 [in Polish].
Google Scholar
Gwóźdź M., Suchodoła M. Bezpieczeństwo pożarowe budowlanych konstrukcji metalowych. Wydawnictwo Politechniki Krakowskiej, 2016 [in Polish].
Google Scholar
Turkowski P., Sulik P. Projektowanie konstrukcji stalowych z uwagi na warunki pożarowe według Eurokodu 3, Warszawa, Instytut Techniki Budowlanej, 2015 [in Polish].
Google Scholar
Kurzawa Z., Polus Ł., Szumigała M. Stany graniczne i odporność pożarowa elementów stalowych według Eurokodu 3. Wydawnictwo Politechniki Poznańskiej, 2016 [in Polish].
Google Scholar
Franssen J. M., Brauwers L. Numerical determination of 3D temperature fields in steel joints. Second International Workshop: Structures in Fire, Christchurch, New Zealand, 2002.
Google Scholar
Wald F., Simoes da Silva L., Moore D., Santiago A. Experimental behavior of steel joints under natural fire. ECCS – AISC Workshop: Connections in Steel Structures, Amsterdam, The Netherlands, 2004.
Google Scholar
Malendowski M., Burgess I., Glema A. Robustness in fire of a new type of beam-to-column connection, [in:] ce/papers, Special Issue: Proceedings of Eurosteel 2017, Ernst & Sohn, Volume 1, Issue 2-3, pp. 550-559, 2017, https://doi.org/10.1002/cepa.92
Google Scholar
Maślak M., Litwin M. Flexibility of beam-to-column steel joint under fire temperature. Inżynieria i Budownictwo 66(8) (2010) 441–454 [in Polish].
Google Scholar
Maślak M., Pazdanowski M., Snela M. Moment-rotation characteristics for flexible beam-to-column steel joint exposed to fire. Journal of Civil Engineering and Architecture 9 (2015) 257–261, https://doi.org/10.17265/1934-7359/2015.03.002
Google Scholar
Maślak M., Pazdanowski M., Snela M., Numerically-based quantification of internal forces generated in a steel frame structure with flexible joints when exposed to a fire, [in:] Advances in Mechanics: Theoretical. Computational and Interdisciplinary Issues – 3rd Polish Congress of Mechanics, PCM 2015 and 21st International Conference on Computer Methods in Mechanics. (ed. Kleiber M. et al.). CRC Press, pp. 389-392, London 2016.
Google Scholar
Maślak M., Pazdanowski M., Snela M., Redistribution of internal forces generated in a steel frame structure with flexible joints when exposed to a fire, [in:] Recent Progress in Steel and Composite Structures - Proceedings of the 13th International Conference on Metal Structures (ICMS2016, Zielona Góra, Poland, 15-17 June 2016). (ed. Giżejowski M. et al.). CRC Press,pp. 315-322 London 2016.
Google Scholar
Simoes da Silva L., Santiago A., Real P.V. Post-limit stiffness and ductility of end-plate beam-to-column steel joints. Computers & Structures 80 (2002) 515–531, https://doi.org/10.1016/S0045-7949(02)00014-7
Google Scholar
Block F., Burgess I., Davison B., Plank R. The development of a component-based connection element for endplate connections in fire. Fire Safety Journal 42(6-7) (2007) 498–506, doi: 10.1016/j.firesaf.2007.01.008
Google Scholar
European Committee for Standardization. EN 1991-1-2 Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. Brussels, 2002.
Google Scholar
Szumigała M., Polus Ł. A comparison of the rise of the temperature of an unprotected steel column subjected to the standard fire curve ISO 834 and to a natural fire model in the office. Engineering Transactions 63(2) (2015) 157–170.
Google Scholar
Szumigała M., Polus Ł. Fire resistance of the ceiling in the old tenement house. Procedia Engineering 195 (2017) 178–182, https://doi.org/10.1016/j.proeng.2017.04.541
Google Scholar
Maślak M., Suchodoła M., Woźniczka P. Temperature distribution in a steel beam-to-column joint when exposed to fire. Part 1: End-plate joint. Journal of Civil Engineering, Environment and Architecture 65(2) (2018) 25–34, https://doi.org/10.7862/rb.2018.21
Google Scholar
Jaspart J. P., Weynand K. Design of joints in steel and composite structures, Eurocode 3: Design of steel structures, Part 1-8: Design of joints, Eurocode 4: Design of composite steel and concrete structures. ECCS, 2016.
Google Scholar
European Committee for Standardization. EN 1993-1-8 Eurocode 3: Design of steel structures - Part 1-8: Design of joints. Brussels, 2005.
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.