Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Znajomość parametrów mechaniki pękania pozwala na dokładniejszą ocenę degradacji mrozowej betonów wysokowytrzymałych. Betony wysokowytrzymałe pomimo szczelnej struktury, cechuje podwyższona kruchość. Występujące w strukturze betonu nieciągłości oraz szczeliny są miejscami kumulacji znacznych naprężeń. Dodatkowe naprężenia powstające w wyniku cyklicznego zamrażania i rozmrażania stymulują procesy zniszczenia materiału. Podstawowe parametry wytrzymałościowe betonu nie uwzględniają wad strukturalnych materiału i nie dają pełnego opisu podatności na zniszczenie spowodowane np. degradacją mrozową. Celem niniejszej pracy było określenie zależności pomiędzy degradacją mrozową betonów wysokowytrzymałych oraz zmianami wartości ich energii pękania, związanej z inicjacją pękania po 150, 250, 350 oraz 450 cyklach zamrażania/rozmrażania. Badania przeprowadzono przy wykorzystaniu próbek o wymiarach 100 x 100 x 400 mm, ze wstępnie zainicjowanymi szczelinami długości 30 mm. Wykorzystano I model obciążenia (rozciąganie przy zginaniu) w warunkach trójpunktowego zginania, opierając się na procedurze badawczej rekomendowanej przez RILEM. Badaniom poddano betony o wytrzymałości na ściskanie 90 MPa bez włókien oraz z włóknami stalowymi i mieszankę włókien stalowych oraz bazaltowych. Otrzymane wyniki pozwalają na ocenę degradacji mrozowej za pomocą energii pękania Gf oraz krytycznej szerokości rozwarcia szczeliny pierwotnej CTODc.
Golewski G., Sadowski T., "The parameters of concrete fracture mechanics are determined on the basis of experimental tests according to the I crack model", Construction Review, no. 7–8, (2005), pp. 28–33.
Google Scholar
Smith G.J., Rad F. N., "Economic Advantages of High-Strength Concretes in Columns", Concrete International, vol. 11, no. 4, (1989), pp. 37-43.
Google Scholar
Jóźwiak – Niedźwiedzka D., "Preventing peeling of concrete surfaces with the use of moistened drug aggregate", Roads and bridges, no. 2, (2006), pp. 37-54.
Google Scholar
Cheng Y., Zhang Y., Jiao Y., "Quantitative analysis of concrete property under effects of crack, freeze-thaw and carbonation", Construction Building Materials, no. 129, (2016), pp. 106-115. https://doi.org/10.1016/j.conbuildmat.2016.10.113
DOI: https://doi.org/10.1016/j.conbuildmat.2016.10.113
Google Scholar
Song P.S., "Mechanical properties of high – strength steel fiber reinforced concrete", Construction and Building Materials, vol. 18, no. 9, (2004), pp. 669-73.
DOI: https://doi.org/10.1016/j.conbuildmat.2004.04.027
Google Scholar
Holschemacher K., Mueller T., Ribakov Y., "Effect of steel fibres on mechanical properties of high – strength concrete", Materials and design, no. 31, (2010), pp. 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025
DOI: https://doi.org/10.1016/j.matdes.2009.11.025
Google Scholar
Kosior- Kazberuk M., "Variations in fracture energy of concrete subjected to cyclic freezing and thawing", Civil and Mechanical Engineering, no.13, (2013), pp. 254-259. https://doi.org/10.1016/j.acme.2013.01.002
DOI: https://doi.org/10.1016/j.acme.2013.01.002
Google Scholar
ASTM C 666: 2008 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing.
Google Scholar
Shah S.P., "Size – effect method for determining fracture energy and process zone size of concrete, RILEM TC 89–FMT", Materials and Structures, no. 23, (1990),pp. 461–465.
DOI: https://doi.org/10.1007/BF02472030
Google Scholar
Jenq Y. S., Shah S. P., "A two parameter fracture model for concrete", Journal of Engineering Mechanics, no. 111, (1985), pp. 1227–1241.
Google Scholar
Elices M, Guinea G, Planas J., "Measurement of the fracture energy using three-point bend tests: part 3 – influence of cutting the P-δ tail", Material Structures, vol. 25, no. 6, (1992), pp.327–34.
DOI: https://doi.org/10.1007/BF02472591
Google Scholar
Neimitz A., Mechanika pękania, PWN, Warszawa 1998.
Google Scholar
Grzegorz Lesiuk, "Application of a New, Energy-Based ΔS* Crack Driving Force for Fatique Crack Growth Rate Description", Materials, no. 12, (2019), pp. 1-13. https://doi.org/10.3390/ma12030518
DOI: https://doi.org/10.3390/ma12030518
Google Scholar
Ma H., Yu H., Li C., Tan Y., Cao W., Da B., "Freeze-thaw damage to high- preformance concrete with synthetic fibre and fly ash due to ethylene glycol deicer", Construction and Building Materials, no. 187, (2018), pp. 197-204. https://doi.org/10.1016/j.conbuildmat.2018.07.189
DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.189
Google Scholar
Wawrzeńczyk J., Molendowska A., Kłak A., "Frost durability of steel fiber self-compacting concrete for pavements", The Baltic Journal of Road and Bridge Engineering, vol. 11, no. 1, (2016), pp. 35-42. https://doi.org/10.1088/1757-899X/471/3/032023
DOI: https://doi.org/10.3846/bjrbe.2016.04
Google Scholar
Lee, J. S., "Properties on the Freeze-Thaw Resistance of High Performance Concrete Using Fibers and Mineral Admixtures", Materials science forum, vol. 893, (2017), pp. 375-379. https://doi.org/10.4028/www.scientific.net/MSF.893.375
DOI: https://doi.org/10.4028/www.scientific.net/MSF.893.375
Google Scholar
Smarzewski P., Barnat-Hunek D., "Effect of fiber Hybridization on durability Related Properties of Ultra-High Performance Concrete", International Journal of Concrete Structures and Materials, vol. 11, no. 2, (2017), pp. 315-325. https://doi.org/10.1007/s40069-017-0195-6
DOI: https://doi.org/10.1007/s40069-017-0195-6
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.