Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Beton jest obecnie najczęściej używanym materiałem w sektorze budowlanym ze względu na jego korzystne właściwości. Jednakże rozprzestrzenianie się odpadów stanowi znaczący problem środowiskowy. Przez ostatnie trzy dekady badacze zgłębiali wykorzystanie odpadów budowlanych i rozbiórkowych (OBR) oraz odpadów plastikowych jako kruszywa, spoiwa i włókien w materiałach budowlanych. Podejście to wyłoniło się jako znaczące rozwiązanie, które ma sprostać wyzwaniom środowiskowym i ekonomicznym. Celem tego badania jest ocena wpływu włókien z politereftalanu etylenu (PETF) na zachowanie betonu samozagęszczalnego (SCC) z recyklingowym, drobnym kruszywem betonowym (RDKB). Naturalne, drobne kruszywa (NDK) były stosowane jako substytut RDKB w różnych udziałach masowych (0–100%). Dodatkowo, dodano cztery frakcje objętościowe (Vf) włókien PETF (w zakresie od 0,3% do 1,2%), a wyniki ujawniły poprawę wytrzymałości na zginanie i modułu sprężystości otrzymanego materiału kompozytowego. Jednakże w miarę wzrostu Vf zawartości włókien PET i RDKB, wytrzymałość na ściskanie spadała, negatywnie wpływając na absorpcję wody przez zanurzenie i absorpcję wody kapilarnej. Użycie 100% RDKB i 1,2% PETF poprawiło moduł sprężystości i wytrzymałość na zginanie recyklingowego betonu samozagęszczalnego (RSCC) odpowiednio o do 25% i 9%.
H. Lv, Y. Li, H. Bin Yan, D. Wu, G. Shi, and Q. Xu, “Examining construction waste management policies in mainland China for potential performance improvements,” Clean Technol. Environ. Policy, vol. 23, no. 2, pp. 445–462, 2021. https://doi.org/10.1007/s10098-020-01984-y
DOI: https://doi.org/10.1007/s10098-020-01984-y
Google Scholar
L. W. Zhang, A. O. Sojobi, V. K. R. Kodur, and K. M. Liew, “Effective utilization and recycling of mixed recycled aggregates for a greener environment,” J. Clean. Prod., 2019. https://doi.org/10.1016/j.jclepro.2019.07.075
DOI: https://doi.org/10.1016/j.jclepro.2019.07.075
Google Scholar
M. U. Hossain, C. S. Poon, I. M. C. Lo, and J. C. P. Cheng, “Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA,” Resour. Conserv. Recycl., vol. 109, pp. 67–77, 2016. https://doi.org/10.1016/j.resconrec.2016.02.009
DOI: https://doi.org/10.1016/j.resconrec.2016.02.009
Google Scholar
L. W. Zhang, A. O. Sojobi, and K. M. Liew, “Sustainable CFRP-reinforced recycled concrete for cleaner eco-friendly construction,” J. Clean. Prod., vol. 233, pp. 56–75, 2019. https://doi.org/10.1016/j.jclepro.2019.06.025
DOI: https://doi.org/10.1016/j.jclepro.2019.06.025
Google Scholar
A. Ait Mohamed Amer, K. Ezziane, and M. H. Adjoudj, “Evaluation of coarse recycled concrete aggregates effect on the properties of fresh and hardened concrete,” Asian J. Civ. Eng., vol. 22, no. 6, pp. 1173–1184, 2021. https://doi.org/10.1007/s42107-021-00373-0
DOI: https://doi.org/10.1007/s42107-021-00373-0
Google Scholar
Y. Toumi, S. Mezhoud, O. Boukendakdji, and H. Moussa, “Impact of recycled aggregate brick on the physical-mechanical and environmental characteristics of cement treated bases Impact of recycled aggregate brick on the physical-mechanical and environmental characteristics of cement treated bases,” no. September, 2023. https://doi.org/10.35784/bud-arch.3645
DOI: https://doi.org/10.35784/bud-arch.3645
Google Scholar
K. Kapoor, S. P. Singh, B. Singh, and P. Singh, “Effect of recycled aggregates on fresh and hardened properties of self compacting concrete,” Mater. Today Proc., vol. 32, no. xxxx, pp. 600–607, 2020. https://doi.org/10.1016/j.matpr.2020.02.753
DOI: https://doi.org/10.1016/j.matpr.2020.02.753
Google Scholar
E. Güneyisi, M. Gesoglu, Z. Algin, and H. Yazici, “Rheological and fresh properties of self-compacting concretes containing coarse and fine recycled concrete aggregates,” Constr. Build. Mater., vol. 113, pp. 622–630, 2016. https://doi.org/10.1016/j.conbuildmat.2016.03.073
DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.073
Google Scholar
M. U. Usmani and A. S. M. A. Awal, “Physical, mechanical and durable characteristics of concrete incorporating polyethylene terephthalate fiber from bottle waste,” J. Crit. Rev., vol. 7, no. 5, pp. 908–916, 2020. https://doi.org/10.31838/jcr.07.05.187
DOI: https://doi.org/10.31838/jcr.07.05.187
Google Scholar
L. Evangelista and J. de Brito, “Durability performance of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 32, no. 1, pp. 9–14, 2010. https://doi.org/10.1016/j.cemconcomp.2009.09.005
DOI: https://doi.org/10.1016/j.cemconcomp.2009.09.005
Google Scholar
D. Nieto, E. Dapena, P. Alaejos, J. Olmedo, and D. Pérez, “Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregates and Different Water:Cement Ratios,” J. Mater. Civ. Eng., vol. 31, no. 2, p. 04018376, 2019. https://doi.org/10.1061/(asce)mt.1943-5533.0002566
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002566
Google Scholar
M. Pająk, “Research on the recycled and hybrid fibre reinforced self-compacting concrete under flexure,” Bud. i Archit., vol. 19, no. 3, pp. 116–126, 2020. https://doi.org/10.35784/bud-arch.2150
DOI: https://doi.org/10.35784/bud-arch.2150
Google Scholar
J. A. Carneiro, P. R. L. Lima, M. B. Leite, and R. D. Toledo Filho, “Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete,” Cem. Concr. Compos., vol. 46, pp. 65–72, 2014. https://doi.org/10.1016/j.cemconcomp.2013.11.006
DOI: https://doi.org/10.1016/j.cemconcomp.2013.11.006
Google Scholar
A. H. Allawi, A. I. Al-hadithi, and A. S. Mohmoud, “Iraqi Journal of Civil Engineering Effects of Waste Plastic PET Fibers on The Fresh and Hardened of Normal Concrete,” 2021.
DOI: https://doi.org/10.37650/ijce.2021.172855
Google Scholar
I. Zemir, F. Debieb, S. Kenai, Y. Ouldkhaoua, and I. Irki, “Strengthening of ordinary vibrated concrete using steel fibers self-compacting concrete,” J. Adhes. Sci. Technol., vol. 34, no. 14, pp. 1556–1571, 2020. https://doi.org/10.1080/01694243.2020.1712769
DOI: https://doi.org/10.1080/01694243.2020.1712769
Google Scholar
A. I. Al-hadithi, A. Tareq, and W. Khairi, “Mechanical properties and impact behavior of PET fi ber reinforced self- compacting concrete ( SCC ),” Compos. Struct., vol. 224, no. May, p. 111021, 2019. https://doi.org/10.1016/j.compstruct.2019.111021
DOI: https://doi.org/10.1016/j.compstruct.2019.111021
Google Scholar
N. K. Bui, T. Satomi, and H. Takahashi, “Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study,” Waste Manag., vol. 78, pp. 79–93, 2018. https://doi.org/10.1016/j.wasman.2018.05.035
DOI: https://doi.org/10.1016/j.wasman.2018.05.035
Google Scholar
M. Hajmohammadian Baghba, S. A. H. Hashemi, K. Kalbasi Anaraki, and E. S. Hashemi, “Influence of polypropylene-fiber on the mechanical properties of self-compacting-concrete with recycled aggregates,” Mag. Civ. Eng., vol. 99, no. 7, 2020. https://doi.org/10.18720/MCE.99.5
Google Scholar
C. Dong et al., “Fresh and hardened properties of recycled plastic fiber reinforced self-compacting concrete made with recycled concrete aggregate and fly ash, slag, silica fume,” J. Build. Eng., vol. 62, no. September, p. 105384, 2022. https://doi.org/10.1016/j.jobe.2022.105384
DOI: https://doi.org/10.1016/j.jobe.2022.105384
Google Scholar
A. Toghroli, P. Mehrabi, M. Shariati, N. T. Trung, S. Jahandari, and H. Rasekh, “Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers,” Constr. Build. Mater., vol. 252, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118997
DOI: https://doi.org/10.1016/j.conbuildmat.2020.118997
Google Scholar
P. and U. EFNARC The European Guidelines for Self-Compacting Concrete: Specification, “The European Guidelines for Self-Compacting Concrete: Specification, Production and Use,” Eur. Guidel. Self Compact. Concr., no. May, p. 68, 2005.
Google Scholar
BS EN 12350-8:2010, “BSI Standards Publication Testing fresh concrete,” Br. Stand., no. April, p. 18, 2010.
Google Scholar
N. F. EN, “12350–10, Novembre 2010,” Partie Bét. autoplaçant–essai à la boite en L.
Google Scholar
2010 BS EN12350-11:, “BSI Standards Publication Testing fresh concrete Part 11: Self-compacting concrete -- sieve Segregation test,” BSI Stand. Publ., 2010.
Google Scholar
B. S. I. BSI, “12390-3 Testing hardened concrete Compressive strength of test specimens,” Aberdeen’s Concr. Constr., vol. 38, no. 10, 1993.
Google Scholar
ASTM C469/C469M, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM Stand. B., pp. 1–5, 2014. https://doi.org/10.1520/C0469
DOI: https://doi.org/10.1520/C0469
Google Scholar
British Standards Institute, “BS EN 12390-5:2009 Testing hardened concrete — Part 5: Flexural strength of test specimens,” BSI Stand. Publ., no. August, pp. 1–22, 2009.
Google Scholar
“BS 1881-122_2011 Testing concrete.”
Google Scholar
“ASTM C1585_Measurement of Rate of Absorption of Water by HydraulicCement Concretes.”
Google Scholar
D. Carro-López, B. González-Fonteboa, J. De Brito, F. Martínez-Abella, I. González-Taboada, and P. Silva, “Study of the rheology of self-compacting concrete with fine recycled concrete aggregates,” Constr. Build. Mater., vol. 96, pp. 491–501, 2015. https://doi.org/10.1016/j.conbuildmat.2015.08.091
DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.091
Google Scholar
P. Kruger, P. Serbai, A. S. A. Chinelatto, and E. Pereira, “Influence of particle size distribution of conventional fine aggregate and construction demolition waste aggregate in Portland cement mortar,” Ceramica, vol. 67, no. 383, pp. 269–276, 2021. https://doi.org/10.1590/0366-69132021673833035
DOI: https://doi.org/10.1590/0366-69132021673833035
Google Scholar
A. I. Al-Hadithi and N. N. Hilal, “The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers,” J. Build. Eng., vol. 8, pp. 20–28, 2016. https://doi.org/10.1016/j.jobe.2016.06.011
DOI: https://doi.org/10.1016/j.jobe.2016.06.011
Google Scholar
N. Bahrami, M. Zohrabi, S. A. Mahmoudy, and M. Akbari, “Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties,” J. Build. Eng., vol. 31, no. February, p. 101361, 2020. https://doi.org/10.1016/j.jobe.2020.101361
DOI: https://doi.org/10.1016/j.jobe.2020.101361
Google Scholar
S. Shahidan, N. A. Ranle, S. S. M. Zuki, F. S. Khalid, A. R. M. Ridzuan, and F. M. Nazri, “Concrete incorporated with optimum percentages of recycled polyethylene terephthalate (PET) bottle fiber,” Int. J. Integr. Eng., vol. 10, no. 1, pp. 1–8, 2018. https://doi.org/10.30880/ijie.2018.10.01.001
DOI: https://doi.org/10.30880/ijie.2018.10.01.001
Google Scholar
M. Oghabi and M. Khoshvatan, “The Laboratory Experiment of the Effect of Quantity and Length of Plastic Fiber on Compressive Strength and Tensile Resistance of Self-Compacting Concrete,” KSCE J. Civ. Eng., vol. 24, no. 8, pp. 2477–2484, 2020. https://doi.org/10.1007/s12205-020-1578-9.
DOI: https://doi.org/10.1007/s12205-020-1578-9
Google Scholar
A. G. Khoshkenari, P. Shafigh, M. Moghimi, and H. Bin Mahmud, “The role of 0-2mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete,” Mater. Des., vol. 64, pp. 345–354, 2014. https://doi.org/10.1016/j.matdes.2014.07.048
DOI: https://doi.org/10.1016/j.matdes.2014.07.048
Google Scholar
O. Gencel, W. Brostow, T. Datashvili, and M. Thedford, “Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash,” Compos. Interfaces, vol. 18, no. 2, pp. 169–184, 2011. https://doi.org/10.1163/092764411X567567
DOI: https://doi.org/10.1163/092764411X567567
Google Scholar
M. Ahmadi, S. Farzin, A. Hassani, and M. Motamedi, “Mechanical properties of the concrete containing recycled fibers and aggregates,” Constr. Build. Mater., vol. 144, pp. 392–398, 2017. https://doi.org/10.1016/j.conbuildmat.2017.03.215
DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.215
Google Scholar
T. Ochi, S. Okubo, and K. Fukui, “Development of recycled PET fiber and its application as concrete-reinforcing fiber,” Cem. Concr. Compos., vol. 29, no. 6, pp. 448–455, 2007. https://doi.org/10.1016/j.cemconcomp.2007.02.002
DOI: https://doi.org/10.1016/j.cemconcomp.2007.02.002
Google Scholar
M. Behera, A. K. Minocha, and S. K. Bhattacharyya, “Flow behavior, microstructure, strength and shrinkage properties of self-compacting concrete incorporating recycled fine aggregate,” Constr. Build. Mater., vol. 228, p. 116819, 2019, https://www.doi.org/10.1016/j.conbuildmat.2019.116819
DOI: https://doi.org/10.1016/j.conbuildmat.2019.116819
Google Scholar
D. Pedro, J. de Brito, and L. Evangelista, “Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties,” Constr. Build. Mater., vol. 154, pp. 294–309, 2017. https://doi.org/10.1016/j.conbuildmat.2017.07.215
DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.215
Google Scholar
E. Ghorbel and G. Wardeh, “Influence of recycled coarse aggregates incorporation on the fracture properties of concrete,” Constr. Build. Mater., vol. 154, pp. 51–60, 2017. https://doi.org/10.1016/j.conbuildmat.2017.07.183
DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.183
Google Scholar
J. Nam et al., “Effectiveness of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete,” Materials (Basel)., vol. 9, no. 3, 2016. https://doi.org/10.3390/ma9030131
DOI: https://doi.org/10.3390/ma9030131
Google Scholar
M. Koushkbaghi, M. J. Kazemi, H. Mosavi, and E. Mohseni, “Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate,” Constr. Build. Mater., vol. 202, pp. 266–275, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.224
DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.224
Google Scholar
A. I. Al-hadithi and W. K. M. Frhaan, “The Effects of Adding Waste Plastic Fibers (WPFs) on Some Properties of Self Compacting Concrete using Iraqi local Materials,” Iraqi J. Civ. Eng., vol. 11, no. 1, pp. 1–20, 2017.
DOI: https://doi.org/10.37650/ijce.2017.133748
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.