Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Gleby gliniaste, ze względu na podatność na pęcznienie i kurczenie, stanowią poważne wyzwanie w zastosowaniach inżynieryjnych, szczególnie w projektowaniu i budowie fundamentów. Niniejsze badania oparte na kompleksowej serii testów, przeprowadzonych w Laboratorium Robót Publicznych w Adrar w południowej Algierii, dotyczą wzmocnienia gruntów gliniastych poprzez włączenie włókien, zagęszczenie i użycie cementu. Zgodne ze standardami technicznymi w zakresie mechaniki gleby testy badały właściwości fizyczne, mechaniczne i termiczne gleby gliniastej. Wyniki wykazały, że zastosowanie wytrzymałości na ściskanie 2,5 MPa i włączenie włókien palmowych i szklanych w proporcjach od 0% do 0,3% zmniejszyło gęstość nasypową o 0,95% do 7%. Kapilarny współczynnik absorpcji wody wzrósł o 10,61% do 12,63%, podczas gdy wytrzymałość na ściskanie poprawiła się o 11,4% do 34,37%. Ponadto przewodność cieplna spadła o 0,71% do 11,9%. Wyniki te dostarczają cennych informacji na temat właściwości gleb gliniastych i zaobserwowanych ulepszeń. Można stwierdzić, że wzmocnienie gleby za pomocą różnych materiałów i włókien jest wykonalne i przynosi pozytywne rezultaty w zastosowaniach geotechnicznych.
[1] Lahbabi S., Bouferra R., Saadi L., Khalil A., “Study of the physicochemical, mineralogical, and geotechnical properties of clayey soils to improve the durability of eco-construction materials in the rural region”, Construction and Building Materials, vol. 411, (2024), 134304. https://doi.org/10.1016/j.conbuildmat.2023.134304
DOI: https://doi.org/10.1016/j.conbuildmat.2023.134304
Google Scholar
[2] Tang Q., Sun C., Chen Y., Guo W., Jia R., Gao H., Xu X., “Impact of clay on the decompositional mechanical properties of clayey silt hydrate sediments”, Energy & Fuels, vol. 38(8), (2024), 6834-6843. https://doi.org/10.1021/acs.energyfuels.3c04911
DOI: https://doi.org/10.1021/acs.energyfuels.3c04911
Google Scholar
[3] Estabragh A. R., Jahani A., Javadi A. A., Babalar M., „Assessment of different agents for stabilisation of a clay soil”, International Journal of Pavement Engineering, vol. 23(2), (2022), 160-170. https://doi.org/10.1080/10298436.2020.1736293
DOI: https://doi.org/10.1080/10298436.2020.1736293
Google Scholar
[4] Mishra M., Lourenço P. B., Ramana G. V., “Structural health monitoring of civil engineering structures by using the internet of things: A review”, Journal of Building Engineering, 48, (2022), 103954. https://doi.org/10.1016/j.jobe.2021.103954
DOI: https://doi.org/10.1016/j.jobe.2021.103954
Google Scholar
[5] Salih N. B., “Geotechnical characteristics correlations for fine-grained soils”, In IOP Conference Series: Materials Science and Engineering, vol. 737(1), (2020), 012099). https://doi.org/10.1088/1757-899X/737/1/012099
DOI: https://doi.org/10.1088/1757-899X/737/1/012099
Google Scholar
[6] ElMouchi A., Siddiqua S., Wijewickreme D., Polinder H., “A review to develop new correlations for geotechnical properties of organic soils”, Geotechnical and Geological Engineering, vol. 39, (2021), 3315-3336. https://doi.org/10.1007/s10706-021-01723-0
DOI: https://doi.org/10.1007/s10706-021-01723-0
Google Scholar
[7] Soltani A., Deng A., Taheri A., O'Kelly B. C., “Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14(1), (2022), 252-261. https://doi.org/10.1016/j.jrmge.2021.04.009
DOI: https://doi.org/10.1016/j.jrmge.2021.04.009
Google Scholar
[8] Louafi B., Hadef B., Bahar R., “Improvement of geotechnical characteristics of clay soils using lime”, Advanced materials research, vol. 1105, (2015), 315-319. https://doi.org/10.4028/www.scientific.net/AMR.1105.315
DOI: https://doi.org/10.4028/www.scientific.net/AMR.1105.315
Google Scholar
[9] Yousefi A., Jahanian H., Azadi M., „Effect of adding cement and nanocement on mechanical properties of clayey soil”, The European Physical Journal Plus, vol. 135(8), (2020), 649. https://doi.org/10.1140/epjp/s13360-020-00639-7
DOI: https://doi.org/10.1140/epjp/s13360-020-00639-7
Google Scholar
[10] Estabragh A. R., Bordbar A. T., Javadi A. A., “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, vol. 29, (2011), 899-908. https://doi.org/10.1007/s10706-011-9427-8
DOI: https://doi.org/10.1007/s10706-011-9427-8
Google Scholar
[11] Bao X., Huang Y., Jin Z., Xiao X., Tang W., Cui H., Chen X., “Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber”, Construction and Building Materials, vol. 280, (2021), 122517. https://doi.org/10.1016/j.conbuildmat.2021.122517
DOI: https://doi.org/10.1016/j.conbuildmat.2021.122517
Google Scholar
[12] Butt W. A., Mir B. A., Jha J. N., “Strength behavior of clayey soil reinforced with human hair as a natural fibre”, Geotechnical and Geological Engineering, vol. 34, (2016), 411-417. https://doi.org/10.1007/s10706-015-9953-x
DOI: https://doi.org/10.1007/s10706-015-9953-x
Google Scholar
[13] Gul N., Mir B. A., “Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications”, Construction and Building Materials, vol. 392, (2023), 131943. https://doi.org/10.1016/j.conbuildmat.2023.131943
DOI: https://doi.org/10.1016/j.conbuildmat.2023.131943
Google Scholar
[14] Asadi R., Mirghasemi A. A., „Numerical investigation of particle shape on mechanical behaviour of unsaturated granular soils using elliptical particles”, Advanced Powder Technology, vol. 29(12), (2018), 3087-3099. https://doi.org/10.1016/j.apt.2018.08.018
DOI: https://doi.org/10.1016/j.apt.2018.08.018
Google Scholar
[15] Ruiz G., Zhang X., Edris W. F., Cañas I., Garijo L., “A comprehensive study of mechanical properties of compressed earth blocks”, Construction and Building Materials, vol. 176, (2018), 566-572. https://doi.org/10.1016/j.conbuildmat.2018.05.077
DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.077
Google Scholar
[16] Wachira K. T., Optimization of soil-lime and cement mixes for compressed earth stabilized blocks for low-cost housing in East Africa (Kenya). Doctoral dissertation, University of Missouri-Kansas City.
Google Scholar
[17] Fernandes J., Peixoto M., Mateus R., Gervásio H., “Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks”, Journal of Cleaner Production, vol. 241, (2019), 118286. https://doi.org/10.1016/j.jclepro.2019.118286
DOI: https://doi.org/10.1016/j.jclepro.2019.118286
Google Scholar
[18] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
Google Scholar
[19] Hassan W., Farooq K., Mujtaba H., Alshameri B., Shahzad A., Nawaz M. N., Azab M., “Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes”, Transportation Geotechnics, vol. 39, (2023), 100935. https://doi.org/10.1016/j.trgeo.2023.100935
DOI: https://doi.org/10.1016/j.trgeo.2023.100935
Google Scholar
[20] O’Kelly B. C., “Review of recent developments and understanding of Atterberg limits determinations”, Geotechnics, vol. 1(1), (2021), 59-75. https://doi.org/10.3390/geotechnics1010004
DOI: https://doi.org/10.3390/geotechnics1010004
Google Scholar
[21] Cil M. B., Sohn C., Buscarnera G., “DEM modeling of grain size effect in brittle granular soils”, Journal of Engineering Mechanics, vol. 146(3), (2020), 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.000171
DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713
Google Scholar
[22] Shivaprakash S. H., Sridharan A., “Correlation of compaction characteristics of standard and reduced Proctor tests”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, vol. 174(2), (2021), 170-180. https://doi.org/10.1680/jgeen.20.00060
DOI: https://doi.org/10.1680/jgeen.20.00060
Google Scholar
[23] Abbou M., Semcha A., Aoual F. K., “Physico-mechanical characterization and durability of stabilized compressed earth bricks in the region of Timimoun in southwestern Algeria”, Journal of Materials and Engineering Structures «JMES», vol. 8(2), (2021), 287-300.
Google Scholar
[24] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
DOI: https://doi.org/10.1007/s10706-020-01367-6
Google Scholar
[25] Sinha P., Iyer K. K., “Effect of stabilization on characteristics of subgrade soil: a review”, In: Prashant A., Sachan A., Desai C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-15-0886-8_54
DOI: https://doi.org/10.1007/978-981-15-0886-8_54
Google Scholar
[26] Safi W., Singh S., “Efficient & effective improvement and stabilization of clay soil with waste materials”, Materials Today: Proceedings, vol. 51, (2022), 947-955. https://doi.org/10.1016/j.matpr.2021.06.333
DOI: https://doi.org/10.1016/j.matpr.2021.06.333
Google Scholar
[27] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
Google Scholar
[28] Abdelkader F, Mohamed R, Cheikh K, Rabehi R., “Mechanical properties of compressed earth blocks reinforced with glass fibers and palm fibers: Experiments and simulation”, The Journal of Engineering and Exact Sciences, vol. 9(5), (2023) 15916-01e. https://doi.org/10.18540/jcecvl9iss5pp15916-01e
DOI: https://doi.org/10.18540/jcecvl9iss5pp15916-01e
Google Scholar
[29] Sujatha E. R., Atchaya P., Darshan S., Subhashini S., ‘Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement”, Road Materials and Pavement Design, vol. 22, (2021), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387
DOI: https://doi.org/10.1080/14680629.2020.1746387
Google Scholar
[30] Yilmaz Y., “Compaction and strength characteristics of fly ash and fiber amended clayey soil”, Engineering Geology, vol. 188, (2015), 168-177. https://doi.org/10.1016/j.enggeo.2015.01.018
DOI: https://doi.org/10.1016/j.enggeo.2015.01.018
Google Scholar
[31] Yilmaz Y., Kheirjouy A. B., Akgungor A. P., “Investigation of the effect of different saturation methods on the undrained shear strength of a clayey soil compacted with standard and modified proctor energies”, Periodica Polytechnica Civil Engineering, vol. 60(3), (2016), 323-329. https://doi.org/10.3311/PPci.8891
DOI: https://doi.org/10.3311/PPci.8891
Google Scholar
[32] Hamdan M. H. M., Siregar J. P., Cionita T., Jaafar J., Efriyohadi A., Junid R., Kholil A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, vol. 104, (2019), 1075-1086. https://doi.org/10.1007/s00170-019-03976-9
DOI: https://doi.org/10.1007/s00170-019-03976-9
Google Scholar
[33] Rubio C. M., “A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334”, Applied Ecology and Environmental Sciences, vol.1(4), (2013), 45-48.
DOI: https://doi.org/10.12691/aees-1-4-2
Google Scholar
[34] Chen X., Liu Y., Finite element modeling and simulation with ANSYS Workbench. CRC press, 2018.
DOI: https://doi.org/10.1201/9781351045872
Google Scholar
[35] Mostafa M., Uddin N., “Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces”, Case Studies in Construction Materials, vol. 5, (2016), 53-63. https://doi.org/10.1016/j.cscm.2016.07.001
DOI: https://doi.org/10.1016/j.cscm.2016.07.001
Google Scholar
[36] Atiki E., Taallah B., Feia S., Almeasar K. S., Guettala A., “Effects of incorporating date palm waste as a thermal insulating material on the physical properties and mechanical behavior of compressed earth block”, Journal of Natural Fibers, vol. 19(14), (2022), 8778-8795. https://doi.org/10.1080/15440478.2021.1967831
DOI: https://doi.org/10.1080/15440478.2021.1967831
Google Scholar
[37] Mohamed A. E. M. K., “Improvement of swelling clay properties using hay fibers”, Construction and Building Materials, vol. 38, (2013), 242-247. https://doi.org/10.1016/j.conbuildmat.2012.08.031
DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.031
Google Scholar
[38] El Ahmad M., Najjar S., Sadek S., “Drained triaxial response of natural clay reinforced with natural hemp fibers”, International Journal of Geomechanics, vol. 24(7), (2024), 04024123. https://doi.org/10.1061/IJGNAI.GMENG-9190
DOI: https://doi.org/10.1061/IJGNAI.GMENG-9190
Google Scholar
[39] Zhang S., He P., Niu L., “Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick”, Journal of Cleaner Production, vol. 268, (2020), 121690. https://doi.org/10.1016/j.jclepro.2020.121690
DOI: https://doi.org/10.1016/j.jclepro.2020.121690
Google Scholar
[40] Limami H., Manssouri I., Cherkaoui K., Khaldoun A., “Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive”, Cleaner Engineering and Technology, vol. 2, (2021), 100037. https://doi.org/10.1016/j.clet.2020.100037
DOI: https://doi.org/10.1016/j.clet.2020.100037
Google Scholar
[41] Liu L., Liu J., Xiao Z., „Investigation on soil water retention characteristics and tensile strength of phyllite residual soil reinforced with polypropylene fibers”, Construction and Building Materials, 444, 137544. https://doi.org/10.1016/j.conbuildmat.2024.137544
DOI: https://doi.org/10.1016/j.conbuildmat.2024.137544
Google Scholar
[42] Idder A., Hamouine A., Labbaci B., Abdeldjebar R., “The porosity of stabilized earth blocks with the addition plant fibers of the date palm”, Civil Engineering Journal, vol. 6(3), (2020), 478-494. https://doi.org/10.28991/cej-2020-03091485
DOI: https://doi.org/10.28991/cej-2020-03091485
Google Scholar
[43] Abessolo D., Biwole A. B., Fokwa D., Ganou Koungang B. M., Baah Y. B., “Physical, mechanical and hygroscopic behaviour of compressed earth blocks stabilized with cement and reinforced with bamboo fibres”, International Journal of Engineering Research in Africa, vol. 59, (2022), 29-41. https://doi.org/10.4028/p-spbskv
DOI: https://doi.org/10.4028/p-spbskv
Google Scholar
[44] Teixeira E. R., Machado G. P., Junior A. D., Guarnier C., Fernandes J., Silva S. M., Mateus R., “Mechanical and thermal performance characterisation of compressed earth blocks”, Energies, vol. 13(11), (2020), 2978. https://doi.org/10.3390/en13112978
DOI: https://doi.org/10.3390/en13112978
Google Scholar
[45] Yazici M. F., Keskin S. N., „Enhancing mechanical properties of low plasticity clay soil using hemp fibers: effects of fiber content and fiber surface coating”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 48(2), (2024), 961-975. https://doi.org/10.1007/s40996-023-01208-5
DOI: https://doi.org/10.1007/s40996-023-01208-5
Google Scholar
[46] Salimi M., Payan M., Hosseinpour I., Arabani M., Ranjbar P. Z., “Effect of glass fiber (GF) on the mechanical properties and freeze-thaw (FT) durability of lime-nanoclay (NC)-stabilized marl clayey soil”, Construction and Building Materials, vol. 416, (2024),135227. https://doi.org/10.1016/j.conbuildmat.2024.135227
DOI: https://doi.org/10.1016/j.conbuildmat.2024.135227
Google Scholar
[47] Topçuoğlu Y. A., Gürocak Z., “Increasing strength of clay soils with the use of basalt fiber: an experimental study”, Turkish Journal of Science and Technology, vol. 19(1), (2024), 87-96. https://doi.org/10.55525/tjst.1398354
DOI: https://doi.org/10.55525/tjst.1398354
Google Scholar
[48] Donkor P., Obonyo E., “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers”, Materials & Design, vol. 83, (2015), 813-819. https://doi.org/10.1016/j.matdes.2015.06.017
DOI: https://doi.org/10.1016/j.matdes.2015.06.017
Google Scholar
[49] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
DOI: https://doi.org/10.1007/s12517-023-11695-5
Google Scholar
[50] Madrid R., Mechan V., Asto L., Barboza C., Seclen K., “Influence of fibres on the resilient modulus and expansion of clayey subgrade soils”, International Journal of Pavement Engineering, vol. 25(1), (2024), 2298262. https://doi.org/10.1080/10298436.2023.2298262
DOI: https://doi.org/10.1080/10298436.2023.2298262
Google Scholar
[51] Pushpakumara B. H. J., Hewawaduge T. R., „Effect of banana fibre and lime on mechanical and thermal properties of unburnt clay bricks”, Australian Journal of Civil Engineering, vol. 22(1), (2024), 37-46. https://doi.org/10.1080/14488353.2022.2114639
DOI: https://doi.org/10.1080/14488353.2022.2114639
Google Scholar
[52] Berrehail T., Zemmouri N., Agoudjil B., “Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber”, In AIP Conference Proceedings, vol. 1968(1), (2018), 030036. https://doi.org/10.1063/1.5039223
DOI: https://doi.org/10.1063/1.5039223
Google Scholar
[53] El-yahyaoui A., Manssouri I., Lehleh Y., Sahbi H., Limami H., “Enhancing the mechanical and thermal insulation properties of clay-based construction materials with neutral carbon footprint through the use of Doum fibers”, Materials Chemistry and Physics, vol. 314, (2024), 128774. https://doi.org/10.1016/j.matchemphys.2023.128774
DOI: https://doi.org/10.1016/j.matchemphys.2023.128774
Google Scholar
[54] Khoudja D., Taallah B., Izemmouren O., Aggoun S., Herihiri O., Guettala A., “Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste”, Construction and Building Materials, vol. 270, (2021), 121824. https://doi.org/10.1016/j.conbuildmat.2020.121824
DOI: https://doi.org/10.1016/j.conbuildmat.2020.121824
Google Scholar
[55] Ghailane H., Ahamat M. A., Padzi M. M., Beddu S., “Steady-state heat flow through hollow clay bricks”, In IOP Conference Series: Materials Science and Engineering, vol. 834(1), (2020), 012021. https://doi.org/10.1088/1757-899X/834/1/012021
DOI: https://doi.org/10.1088/1757-899X/834/1/012021
Google Scholar
[56] Doubi H. G., Kouamé A. N., Konan L. K., Tognonvi M., Oyetola S., “Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement”, Materials Sciences and Applications, vol. 8(12), (2017), 848. https://doi.org/10.4236/msa.2017.812062
DOI: https://doi.org/10.4236/msa.2017.812062
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.