Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Rosnące zapotrzebowanie na beton spowodowane rozwojem infrastruktury i urbanizacji powoduje niszczenie zasobów naturalnych i szkodzi ekosystemowi. Wykorzystanie w betonie materiałów pochodzących z recyklingu, takich jak proszek z odpadów marmurowych (WMP) i grube kruszywa marmurowe (MCA), może zaspokoić to zapotrzebowanie przy jednoczesnym zachowaniu jakości i dbaniu o ekologię. W niniejszym badaniu oceniono właściwości mechaniczne ekologicznego betonu o różnym poziomie zawartości odpadów marmurowych – zastąpiono cement WMP (0%-10%) i naturalne kruszywa MCA (10%-90%). Do oceny wytrzymałości na zginanie, ściskanie i rozciąganie przy rozłupywaniu wykorzystano kombinację testów niszczących i nieniszczących, w tym młotek Schmidta i ultradźwiękowe testy prędkości. Wyniki wykazały wzrost urabialności o 15,78% po dodaniu marmurowych kruszyw gruboziarnistych. W porównaniu do mieszanki kontrolnej po dodaniu 10% proszku marmurowego i 70% kruszywa marmurowego wytrzymałość na ściskanie wzrosła do 44,02% w dniu 14. Wytrzymałość na rozciąganie przy rozłupywaniu wzrosła o 11,02%, 11% i 10,33% odpowiednio w dniach 7, 14 i 28 dla mieszanek z 70% kruszywem marmurowym. Prędkość impulsu ultradźwiękowego wynosiła od 3,68 km/s do 4,71 km/s, co wskazuje na brak negatywnego wpływu na jakość betonu. Wyniki młotka Schmidta dobrze korelowały z wytrzymałością na ściskanie z testów niszczących. Badanie podkreśla potencjał wykorzystania odpadów marmurowych jako skutecznego substytutu naturalnych kruszyw w betonie.
[1] Ullah K., Qureshi M. I., Ahmad A., Ullah Z., “Substitution potential of plastic fine aggregate in Concrete for sustainable production”, Structures, vol. 35, (2022), 622-637. https://doi.org/10.1016/j.istruc.2021.11.003
DOI: https://doi.org/10.1016/j.istruc.2021.11.003
Google Scholar
[2] Aruntas H. Y., Gürü M., Dayi M., Tekin I., “Utilization of waste marble dust as an additive in cement production”, Materials & Design, vol. 31, (2010), 40394042. https://doi.org/10.1016/j.matdes. 2010.03.036
DOI: https://doi.org/10.1016/j.matdes.2010.03.036
Google Scholar
[3] Anwar A., Ahmad S., Ashraf Husain A., Ahmad S.A., “Replacement of cement by marble dust and ceramic waste in concrete for sustainable development”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 2(6), (2015), 496-503.
Google Scholar
[4] Jang J. G., Lee. H. K., “Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement”, Cement and Concrete Research, vol. 82, (2016), 50-57. https://doi.org/10.1016/j.cemconres.2016.01.001
DOI: https://doi.org/10.1016/j.cemconres.2016.01.001
Google Scholar
[5] Rashad A. M. “Metakaolin as cementitious material: history, scours, production and composition – a comprehensive overview”, Construction and Building Materials, vol. 41, (2013), 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001
DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.001
Google Scholar
[6] Sankh A. C., Biradar P. M., Naghathan S. J., Ishwargol M.B., “Recent trends in replacement of natural sand with different alternatives”, Journal of Mechanical and Civil Engineering, (2014), 59-66.
Google Scholar
[7] Ismail S., Ramli M., “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications”, Construction and Building Materials, vol. 44, (2013), 464-476. https://doi.org/10.1016/j.conbuildmat.2013.03.014
DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.014
Google Scholar
[8] Arulmoly B., Konthesingha C., Nanayakkara A., “Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand”, Construction and Building Materials, vol. 297, (2021), 123784. https://doi.org/10.1016/j.conbuildmat.2021.123784
DOI: https://doi.org/10.1016/j.conbuildmat.2021.123784
Google Scholar
[9] Akbulut S. K., Gürer G., “Use of aggregates produced from marble quarry waste in asphalt pavements”, Building and Environment, vol. 42, (2007), 1921-1930. https://doi.org/10.1016/j.buildenv.2006.03.012
DOI: https://doi.org/10.1016/j.buildenv.2006.03.012
Google Scholar
[10] Binici H., Shah T., Aksogan O., Kaplan H., “Durability of concrete made with granite and marble as recycle aggregate”, Journal of Materials Processing Technology, vol. 208, (2008), 299-308. https://doi.org/j.jmatprotec.2007.12.120
DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.120
Google Scholar
[11] Hebhoub H., Aoun H., Belachia M., Houari H., Ghorbel E., “Use of waste marble aggregates in concrete”, Construction and Building Materials, vol. 25, (2011), 1167-1171. https://doi.org/10.1016/j.conbuildmat.2010.09.037
DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.037
Google Scholar
[12] Gencel O., Ozelb C., Fuat Koksal F., Erdogmus E., Martínez-Barrera G., Brostow W., “Properties of concrete paving blocks made with waste marble”, Journal of Cleaner Production, vol. 21(1), (2012), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023
DOI: https://doi.org/10.1016/j.jclepro.2011.08.023
Google Scholar
[13] André A., Performance in durability terms of concrete incorporating waste coarse aggregates from the marble industry, Instituto Superior Tecnico, Universidade Tecnica de Lisbona, Lisbon, 2012.
Google Scholar
[14] André A., Brito De., Rosa A., Pedro D., “Durability performance of concrete incorporating coarse aggregates from marble industry waste”, Journal of Cleaner Production, vol. 65, (2014), 389-396. https://doi.org/10.1016/j.jclepro.2013.09.037
DOI: https://doi.org/10.1016/j.jclepro.2013.09.037
Google Scholar
[15] Ceylan H., Manca S., “Evaluation of concrete aggregate marble pieces”, SDU J. Tech. Sci., vol. 3, (2013), 21-25.
Google Scholar
[16] Martins P., De Brito J., Rosa A., Pedro D., “Mechanical performance of concrete with the incorporation of coarse waste from the marble industry”, Materials Research, vol. 17(5), (2014), 1093-1101. https://doi.org/10.1590/1516-1439.210413
DOI: https://doi.org/10.1590/1516-1439.210413
Google Scholar
[17] Kore S. D., Vyas A. K., “Impact of marble waste as coarse aggregate on properties of lean cement concrete”, Case Studies in Construction Materials, vol. 4, (2016), 85-92. https://doi.org/10.1016/j.cscm.2016.01.002
DOI: https://doi.org/10.1016/j.cscm.2016.01.002
Google Scholar
[18] Kore S. D., Vyas A. K., “Cost effective design of sustainable concrete using marble waste as coarse aggregate”, Journal of Materials and Engineering Structures, vol. 3, (2016), 167-180.
Google Scholar
[19] Sunil S., Varghese N., “Study on waste marble as partial replacement of coarse aggregate in concrete”, International Journal of Scientific & Engineering Research, vol. 11(10), (October 2020).
Google Scholar
[20] Sahu S., Thakur C. S., Dubey S., “Analyzing the strength of waste marble used concrete and plain concrete”, International Research Journal of Modernization in Engineering Technology and Science, vol. 3(4), (2021), pp. 367-372.
Google Scholar
[21] Gencel O., Nodehi M., Bayraktar O. Y., Kaplan G., Benli A., Koksal F., Bilir T., Siddique R., Ozbakkaloglu T., “The use of waste marble for cleaner production of structural concrete: A comprehensive experimental study", Construction and Building Materials, vol. 361, (2022), 129612. https://doi.org/10.1016/j.conbuildmat.2022.129612
DOI: https://doi.org/10.1016/j.conbuildmat.2022.129612
Google Scholar
[22] Sowjanya M., Raju N., Bhavananda L., Vishnu Vardhan O., Lokesh S. S., “Behaviour of pervious concrete using marble waste s coarse aggregate”, Journal of Engineering Sciences, vol. 14(2), (2023), 429-441.
Google Scholar
[23] NM 10.1.004, Hydraulic binders; Cements, Norme Marocaine, 2003.
Google Scholar
[24] NM 10.1.353, Concrete mixing water specifications for sampling, testing and evaluation of suitability of use, including process water from the concrete industry, 1985.
Google Scholar
[25] NF EN 12620, The characteristics of aggregates and fillers, 2003.
Google Scholar
[26] NF P-18-560, AFNOR, Aggregates – Particle size analysis by sieving, 1990.
Google Scholar
[27] EN 12350-2, Testing fresh concrete – Part 2: Slump test, 2019.
Google Scholar
[28] NF EN 12390-3, Tests for hardened concrete – Part 3: Compressive strength of specimens.
Google Scholar
[29] NF EN 12390-6, Tests for hardened concrete – Part 6: Determination of tensile splitting. strength of specimens.
Google Scholar
[30] NF EN 12390-5, Tests for hardened concrete – Part 5: Flexural strength on specimens, 2019.
Google Scholar
[31] NF EN 12504-4, Testing concrete in structures – Part 4: Determination of ultrasonic pulse velocity, 2021.
Google Scholar
[32] NF EN 12504-2, Tests for concrete in structures - Part 2: Non-destructive tests – Determination of rebound number, 2013.
Google Scholar
[33] Aliabdo A. A., Abd Elmoaty A. E. M., Auda E. M., “Re-use of waste marble dust in the production of cement and concrete”, Construction and Building Materials, vol. 50, (2014), 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
DOI: https://doi.org/10.1016/j.conbuildmat.2013.09.005
Google Scholar
[34] Ashish D. K., “Concrete made with waste marble powder and supplementary cementitious material for sustainable development”, Journal of Cleaner Production, vol. 211, (2018), 716-729. https://doi.org/10.1016/j.jclepro.2018.11.245
DOI: https://doi.org/10.1016/j.jclepro.2018.11.245
Google Scholar
[35] Vardhan K., Siddique R. and Goyal S., “Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete”, Construction and Building Materials, vol. 228, (2019), 116730. https://doi.org/10.1016/j.conbuildmat.2019.116730
DOI: https://doi.org/10.1016/j.conbuildmat.2019.116730
Google Scholar
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.